With the acceleration of urbanization, intelligent transportation systems have an increasing demand for accurate traffic flow prediction. This paper proposes a novel Graph Enhanced Spatio-temporal Hierarchical Inference Network (GEnSHIN) to handle the complex spatio-temporal dependencies in traffic flow prediction. The model integrates three innovative designs: 1) An attention-enhanced Graph Convolutional Recurrent Unit (GCRU), which strengthens the modeling capability for long-term temporal dependencies by introducing Transformer modules; 2) An asymmetric dual-embedding graph generation mechanism, which leverages the real road network and data-driven latent asymmetric topology to generate graph structures that better fit the characteristics of actual traffic flow; 3) A dynamic memory bank module, which utilizes learnable traffic pattern prototypes to provide personalized traffic pattern representations for each sensor node, and introduces a lightweight graph updater during the decoding phase to adapt to dynamic changes in road network states. Extensive experiments on the public dataset METR-LA show that GEnSHIN achieves or surpasses the performance of comparative models across multiple metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Notably, the model demonstrates excellent prediction stability during peak morning and evening traffic hours. Ablation experiments further validate the effectiveness of each core module and its contribution to the final performance.
Rapid e-commerce growth has pushed last-mile delivery networks to their limits, where small routing gains translate into lower costs, faster service, and fewer emissions. Classical heuristics struggle to adapt when travel times are highly asymmetric (e.g., one-way streets, congestion). A deep learning-based approach to the last-mile routing problem is presented to generate geographical zones composed of stop sequences to minimize last-mile delivery times. The presented approach is an encoder-decoder architecture. Each route is represented as a complete directed graph whose nodes are stops and whose edge weights are asymmetric travel times. A Graph Neural Network encoder produces node embeddings that captures the spatial relationships between stops. A Pointer Network decoder then takes the embeddings and the route's start node to sequentially select the next stops, assigning a probability to each unvisited node as the next destination. Cells of a Discrete Global Grid System which contain route stops in the training data are obtained and clustered to generate geographical zones of similar size in which the process of training and inference are divided. Subsequently, a different instance of the model is trained per zone only considering the stops of the training routes which are included in that zone. This approach is evaluated using the Los Angeles routes from the 2021 Amazon Last Mile Routing Challenge. Results from general and zone-based training are compared, showing a reduction in the average predicted route length in the zone-based training compared to the general training. The performance improvement of the zone-based approach becomes more pronounced as the number of stops per route increases.
Retrieval Augmented Generation (RAG) has made significant strides in overcoming key limitations of large language models, such as hallucination, lack of contextual grounding, and issues with transparency. However, traditional RAG systems consist of three interconnected neural components - the retriever, re-ranker, and generator - whose internal reasoning processes remain opaque. This lack of transparency complicates interpretability, hinders debugging efforts, and erodes trust, especially in high-stakes domains where clear decision-making is essential. To address these challenges, we introduce the concept of Neurosymbolic RAG, which integrates symbolic reasoning using a knowledge graph with neural retrieval techniques. This new framework aims to answer two primary questions: (a) Can retrievers provide a clear and interpretable basis for document selection? (b) Can symbolic knowledge enhance the clarity of the retrieval process? We propose three methods to improve this integration. First is MAR (Knowledge Modulation Aligned Retrieval) that employs modulation networks to refine query embeddings using interpretable symbolic features, thereby making document matching more explicit. Second, KG-Path RAG enhances queries by traversing knowledge graphs to improve overall retrieval quality and interpretability. Lastly, Process Knowledge-infused RAG utilizes domain-specific tools to reorder retrieved content based on validated workflows. Preliminary results from mental health risk assessment tasks indicate that this neurosymbolic approach enhances both transparency and overall performance
Supervised machine learning frameworks rely on extensive labeled datasets for robust performance on real-world tasks. However, there is a lack of large annotated datasets in audio and music domains, as annotating such recordings is resource-intensive, laborious, and often require expert domain knowledge. In this work, we explore the use of label propagation (LP), a graph-based semi-supervised learning technique, for automatically labeling the unlabeled set in an unsupervised manner. By constructing a similarity graph over audio embeddings, we propagate limited label information from a small annotated subset to a larger unlabeled corpus in a transductive, semi-supervised setting. We apply this method to two tasks in Indian Art Music (IAM): Raga identification and Instrument classification. For both these tasks, we integrate multiple public datasets along with additional recordings we acquire from Prasar Bharati Archives to perform LP. Our experiments demonstrate that LP significantly reduces labeling overhead and produces higher-quality annotations compared to conventional baseline methods, including those based on pretrained inductive models. These results highlight the potential of graph-based semi-supervised learning to democratize data annotation and accelerate progress in music information retrieval.
To mitigate hallucinations in large language models (LLMs), we propose a framework that focuses on errors induced by prompts. Our method extends a chain-style knowledge distillation approach by incorporating a programmable module that guides knowledge graph exploration. This module is embedded as executable code within the reasoning prompt, allowing the model to leverage external structured knowledge during inference. Based on this design, we develop an enhanced distillation-based reasoning framework that explicitly regulates intermediate reasoning steps, resulting in more reliable predictions. We evaluate the proposed approach on multiple public benchmarks using GPT-4 and LLaMA-3.3. Experimental results show that code-guided reasoning significantly improves contextual modeling and reduces prompt-induced hallucinations. Specifically, HIT@1, HIT@3, and HIT@5 increase by 15.64%, 13.38%, and 13.28%, respectively, with scores exceeding 95% across several evaluation settings. These findings indicate that the proposed method effectively constrains erroneous reasoning while improving both accuracy and interpretability.
Automated cyber defense (ACD) seeks to protect computer networks with minimal or no human intervention, reacting to intrusions by taking corrective actions such as isolating hosts, resetting services, deploying decoys, or updating access controls. However, existing approaches for ACD, such as deep reinforcement learning (RL), often face difficult exploration in complex networks with large decision/state spaces and thus require an expensive amount of samples. Inspired by the need to learn sample-efficient defense policies, we frame ACD in CAGE Challenge 4 (CAGE-4 / CC4) as a context-based partially observable Markov decision problem and propose a planning-centric defense policy based on Monte Carlo Tree Search (MCTS). It explicitly models the exploration-exploitation tradeoff in ACD and uses statistical sampling to guide exploration and decision making. We make novel use of graph neural networks (GNNs) to embed observations from the network as attributed graphs, to enable permutation-invariant reasoning over hosts and their relationships. To make our solution practical in complex search spaces, we guide MCTS with learned graph embeddings and priors over graph-edit actions, combining model-free generalization and policy distillation with look-ahead planning. We evaluate the resulting agent on CC4 scenarios involving diverse network structures and adversary behaviors, and show that our search-guided, graph-embedding-based planning improves defense reward and robustness relative to state-of-the-art RL baselines.
Community detection is crucial for applications like targeted marketing and recommendation systems. Traditional methods rely on network structure, and embedding-based models integrate semantic information. However, there is a challenge when a model leverages local and global information from complex structures like social networks. Graph Neural Networks (GNNs) and Transformers have shown superior performance in capturing local and global relationships. In this paper, We propose Graph Integrated Transformer for Community Detection (GIT-CD), a hybrid model combining GNNs and Transformer-based attention mechanisms to enhance community detection in social networks. Specifically, the GNN module captures local graph structures, while the Transformer module models long-range dependencies. A self-optimizing clustering module refines community assignments using K-Means, silhouette loss, and KL divergence minimization. Experimental results on benchmark datasets show that GIT-CD outperforms state-of-the-art models, making it a robust approach for detecting meaningful communities in complex social networks.
Simulating nonlinear reaction-diffusion dynamics on complex, non-Euclidean manifolds remains a fundamental challenge in computational morphogenesis, constrained by high-fidelity mesh generation costs and symplectic drift in discrete time-stepping schemes. This study introduces the Intrinsic-Metric Physics-Informed Neural Network (IM-PINN), a mesh-free geometric deep learning framework that solves partial differential equations directly in the continuous parametric domain. By embedding the Riemannian metric tensor into the automatic differentiation graph, our architecture analytically reconstructs the Laplace-Beltrami operator, decoupling solution complexity from geometric discretization. We validate the framework on a "Stochastic Cloth" manifold with extreme Gaussian curvature fluctuations ($K \in [-2489, 3580]$), where traditional adaptive refinement fails to resolve anisotropic Turing instabilities. Using a dual-stream architecture with Fourier feature embeddings to mitigate spectral bias, the IM-PINN recovers the "splitting spot" and "labyrinthine" regimes of the Gray-Scott model. Benchmarking against the Surface Finite Element Method (SFEM) reveals superior physical rigor: the IM-PINN achieves global mass conservation error of $\mathcal{E}_{mass} \approx 0.157$ versus SFEM's $0.258$, acting as a thermodynamically consistent global solver that eliminates mass drift inherent in semi-implicit integration. The framework offers a memory-efficient, resolution-independent paradigm for simulating biological pattern formation on evolving surfaces, bridging differential geometry and physics-informed machine learning.
While Large Language Models (LLMs) excel at generalized reasoning, standard retrieval-augmented approaches fail to address the disconnected nature of long-term agentic memory. To bridge this gap, we introduce Synapse (Synergistic Associative Processing Semantic Encoding), a unified memory architecture that transcends static vector similarity. Drawing from cognitive science, Synapse models memory as a dynamic graph where relevance emerges from spreading activation rather than pre-computed links. By integrating lateral inhibition and temporal decay, the system dynamically highlights relevant sub-graphs while filtering interference. We implement a Triple Hybrid Retrieval strategy that fuses geometric embeddings with activation-based graph traversal. Comprehensive evaluations on the LoCoMo benchmark show that Synapse significantly outperforms state-of-the-art methods in complex temporal and multi-hop reasoning tasks, offering a robust solution to the "Contextual Tunneling" problem. Our code and data will be made publicly available upon acceptance.
Node classification is a fundamental problem in information retrieval with many real-world applications, such as community detection in social networks, grouping articles published online and product categorization in e-commerce. Zero-shot node classification in text-attributed graphs (TAGs) presents a significant challenge, particularly due to the absence of labeled data. In this paper, we propose a novel Zero-shot Prompt Tuning (ZPT) framework to address this problem by leveraging a Universal Bimodal Conditional Generator (UBCG). Our approach begins with pre-training a graph-language model to capture both the graph structure and the associated textual descriptions of each node. Following this, a conditional generative model is trained to learn the joint distribution of nodes in both graph and text modalities, enabling the generation of synthetic samples for each class based solely on the class name. These synthetic node and text embeddings are subsequently used to perform continuous prompt tuning, facilitating effective node classification in a zero-shot setting. Furthermore, we conduct extensive experiments on multiple benchmark datasets, demonstrating that our framework performs better than existing state-of-the-art baselines. We also provide ablation studies to validate the contribution of the bimodal generator. The code is provided at: https://github.com/Sethup123/ZPT.