Abstract:This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
Abstract:Recent advances in synthetic speech have made audio deepfakes increasingly realistic, posing significant security risks. Existing detection methods that rely on a single modality, either raw waveform embeddings or spectral based features, are vulnerable to non spoof disturbances and often overfit to known forgery algorithms, resulting in poor generalization to unseen attacks. To address these shortcomings, we investigate hybrid fusion frameworks that integrate self supervised learning (SSL) based representations with handcrafted spectral descriptors (MFCC , LFCC, CQCC). By aligning and combining complementary information across modalities, these fusion approaches capture subtle artifacts that single feature approaches typically overlook. We explore several fusion strategies, including simple concatenation, cross attention, mutual cross attention, and a learnable gating mechanism, to optimally blend SSL features with fine grained spectral cues. We evaluate our approach on four challenging public benchmarks and report generalization performance. All fusion variants consistently outperform an SSL only baseline, with the cross attention strategy achieving the best generalization with a 38% relative reduction in equal error rate (EER). These results confirm that joint modeling of waveform and spectral views produces robust, domain agnostic representations for audio deepfake detection.