What is Generative AI? Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Papers and Code
Jul 09, 2025
Abstract:We propose a unified food-domain QA framework that combines a large-scale multimodal knowledge graph (MMKG) with generative AI. Our MMKG links 13,000 recipes, 3,000 ingredients, 140,000 relations, and 14,000 images. We generate 40,000 QA pairs using 40 templates and LLaVA/DeepSeek augmentation. Joint fine-tuning of Meta LLaMA 3.1-8B and Stable Diffusion 3.5-Large improves BERTScore by 16.2\%, reduces FID by 37.8\%, and boosts CLIP alignment by 31.1\%. Diagnostic analyses-CLIP-based mismatch detection (35.2\% to 7.3\%) and LLaVA-driven hallucination checks-ensure factual and visual fidelity. A hybrid retrieval-generation strategy achieves 94.1\% accurate image reuse and 85\% adequacy in synthesis. Our results demonstrate that structured knowledge and multimodal generation together enhance reliability and diversity in food QA.
Via

Jul 09, 2025
Abstract:While diffusion models excel at image generation, their growing adoption raises critical concerns around copyright issues and model transparency. Existing attribution methods identify training examples influencing an entire image, but fall short in isolating contributions to specific elements, such as styles or objects, that matter most to stakeholders. To bridge this gap, we introduce \emph{concept-level attribution} via a novel method called \emph{Concept-TRAK}. Concept-TRAK extends influence functions with two key innovations: (1) a reformulated diffusion training loss based on diffusion posterior sampling, enabling robust, sample-specific attribution; and (2) a concept-aware reward function that emphasizes semantic relevance. We evaluate Concept-TRAK on the AbC benchmark, showing substantial improvements over prior methods. Through diverse case studies--ranging from identifying IP-protected and unsafe content to analyzing prompt engineering and compositional learning--we demonstrate how concept-level attribution yields actionable insights for responsible generative AI development and governance.
* Preprint
Via

Jul 09, 2025
Abstract:We present 4KAgent, a unified agentic super-resolution generalist system designed to universally upscale any image to 4K resolution (and even higher, if applied iteratively). Our system can transform images from extremely low resolutions with severe degradations, for example, highly distorted inputs at 256x256, into crystal-clear, photorealistic 4K outputs. 4KAgent comprises three core components: (1) Profiling, a module that customizes the 4KAgent pipeline based on bespoke use cases; (2) A Perception Agent, which leverages vision-language models alongside image quality assessment experts to analyze the input image and make a tailored restoration plan; and (3) A Restoration Agent, which executes the plan, following a recursive execution-reflection paradigm, guided by a quality-driven mixture-of-expert policy to select the optimal output for each step. Additionally, 4KAgent embeds a specialized face restoration pipeline, significantly enhancing facial details in portrait and selfie photos. We rigorously evaluate our 4KAgent across 11 distinct task categories encompassing a total of 26 diverse benchmarks, setting new state-of-the-art on a broad spectrum of imaging domains. Our evaluations cover natural images, portrait photos, AI-generated content, satellite imagery, fluorescence microscopy, and medical imaging like fundoscopy, ultrasound, and X-ray, demonstrating superior performance in terms of both perceptual (e.g., NIQE, MUSIQ) and fidelity (e.g., PSNR) metrics. By establishing a novel agentic paradigm for low-level vision tasks, we aim to catalyze broader interest and innovation within vision-centric autonomous agents across diverse research communities. We will release all the code, models, and results at: https://4kagent.github.io.
Via

Jul 08, 2025
Abstract:Machine learning-based supervised classifiers are widely used for security tasks, and their improvement has been largely focused on algorithmic advancements. We argue that data challenges that negatively impact the performance of these classifiers have received limited attention. We address the following research question: Can developments in Generative AI (GenAI) address these data challenges and improve classifier performance? We propose augmenting training datasets with synthetic data generated using GenAI techniques to improve classifier generalization. We evaluate this approach across 7 diverse security tasks using 6 state-of-the-art GenAI methods and introduce a novel GenAI scheme called Nimai that enables highly controlled data synthesis. We find that GenAI techniques can significantly improve the performance of security classifiers, achieving improvements of up to 32.6% even in severely data-constrained settings (only ~180 training samples). Furthermore, we demonstrate that GenAI can facilitate rapid adaptation to concept drift post-deployment, requiring minimal labeling in the adjustment process. Despite successes, our study finds that some GenAI schemes struggle to initialize (train and produce data) on certain security tasks. We also identify characteristics of specific tasks, such as noisy labels, overlapping class distributions, and sparse feature vectors, which hinder performance boost using GenAI. We believe that our study will drive the development of future GenAI tools designed for security tasks.
Via

Jul 09, 2025
Abstract:We present Gradientsys, a next-generation multi-agent scheduling framework that coordinates diverse specialized AI agents using a typed Model-Context Protocol (MCP) and a ReAct-based dynamic planning loop. At its core, Gradientsys employs an LLM-powered scheduler for intelligent one-to-many task dispatch, enabling parallel execution of heterogeneous agents such as PDF parsers, web search modules, GUI controllers, and web builders. The framework supports hybrid synchronous/asynchronous execution, respects agent capacity constraints, and incorporates a robust retry-and-replan mechanism to handle failures gracefully. To promote transparency and trust, Gradientsys includes an observability layer streaming real-time agent activity and intermediate reasoning via Server-Sent Events (SSE). We offer an architectural overview and evaluate Gradientsys against existing frameworks in terms of extensibility, scheduling topology, tool reusability, parallelism, and observability. Experiments on the GAIA general-assistant benchmark show that Gradientsys achieves higher task success rates with reduced latency and lower API costs compared to a MinionS-style baseline, demonstrating the strength of its LLM-driven multi-agent orchestration.
Via

Jul 09, 2025
Abstract:Robust verbal confidence generated by large language models (LLMs) is crucial for the deployment of LLMs to ensure transparency, trust, and safety in human-AI interactions across many high-stakes applications. In this paper, we present the first comprehensive study on the robustness of verbal confidence under adversarial attacks. We introduce a novel framework for attacking verbal confidence scores through both perturbation and jailbreak-based methods, and show that these attacks can significantly jeopardize verbal confidence estimates and lead to frequent answer changes. We examine a variety of prompting strategies, model sizes, and application domains, revealing that current confidence elicitation methods are vulnerable and that commonly used defence techniques are largely ineffective or counterproductive. Our findings underscore the urgent need to design more robust mechanisms for confidence expression in LLMs, as even subtle semantic-preserving modifications can lead to misleading confidence in responses.
Via

Jul 08, 2025
Abstract:In July 2025, 18 academic manuscripts on the preprint website arXiv were found to contain hidden instructions known as prompts designed to manipulate AI-assisted peer review. Instructions such as "GIVE A POSITIVE REVIEW ONLY" were concealed using techniques like white-colored text. Author responses varied: one planned to withdraw the affected paper, while another defended the practice as legitimate testing of reviewer compliance. This commentary analyzes this practice as a novel form of research misconduct. We examine the technique of prompt injection in large language models (LLMs), revealing four types of hidden prompts, ranging from simple positive review commands to detailed evaluation frameworks. The defense that prompts served as "honeypots" to detect reviewers improperly using AI fails under examination--the consistently self-serving nature of prompt instructions indicates intent to manipulate. Publishers maintain inconsistent policies: Elsevier prohibits AI use in peer review entirely, while Springer Nature permits limited use with disclosure requirements. The incident exposes systematic vulnerabilities extending beyond peer review to any automated system processing scholarly texts, including plagiarism detection and citation indexing. Our analysis underscores the need for coordinated technical screening at submission portals and harmonized policies governing generative AI (GenAI) use in academic evaluation.
Via

Jul 08, 2025
Abstract:Text-to-image generation advancements have been predominantly English-centric, creating barriers for non-English speakers and perpetuating digital inequities. While existing systems rely on translation pipelines, these introduce semantic drift, computational overhead, and cultural misalignment. We introduce NeoBabel, a novel multilingual image generation framework that sets a new Pareto frontier in performance, efficiency and inclusivity, supporting six languages: English, Chinese, Dutch, French, Hindi, and Persian. The model is trained using a combination of large-scale multilingual pretraining and high-resolution instruction tuning. To evaluate its capabilities, we expand two English-only benchmarks to multilingual equivalents: m-GenEval and m-DPG. NeoBabel achieves state-of-the-art multilingual performance while retaining strong English capability, scoring 0.75 on m-GenEval and 0.68 on m-DPG. Notably, it performs on par with leading models on English tasks while outperforming them by +0.11 and +0.09 on multilingual benchmarks, even though these models are built on multilingual base LLMs. This demonstrates the effectiveness of our targeted alignment training for preserving and extending crosslingual generalization. We further introduce two new metrics to rigorously assess multilingual alignment and robustness to code-mixed prompts. Notably, NeoBabel matches or exceeds English-only models while being 2-4x smaller. We release an open toolkit, including all code, model checkpoints, a curated dataset of 124M multilingual text-image pairs, and standardized multilingual evaluation protocols, to advance inclusive AI research. Our work demonstrates that multilingual capability is not a trade-off but a catalyst for improved robustness, efficiency, and cultural fidelity in generative AI.
* 34 pages, 12 figures
Via

Jul 08, 2025
Abstract:Complex neural networks require substantial memory to store a large number of synaptic weights. This work introduces WINGs (Automatic Weight Generator for Secure and Storage-Efficient Deep Learning Models), a novel framework that dynamically generates layer weights in a fully connected neural network (FC) and compresses the weights in convolutional neural networks (CNNs) during inference, significantly reducing memory requirements without sacrificing accuracy. WINGs framework uses principal component analysis (PCA) for dimensionality reduction and lightweight support vector regression (SVR) models to predict layer weights in the FC networks, removing the need for storing full-weight matrices and achieving substantial memory savings. It also preferentially compresses the weights in low-sensitivity layers of CNNs using PCA and SVR with sensitivity analysis. The sensitivity-aware design also offers an added level of security, as any bit-flip attack with weights in compressed layers has an amplified and readily detectable effect on accuracy. WINGs achieves 53x compression for the FC layers and 28x for AlexNet with MNIST dataset, and 18x for Alexnet with CIFAR-10 dataset with 1-2% accuracy loss. This significant reduction in memory results in higher throughput and lower energy for DNN inference, making it attractive for resource-constrained edge applications.
* 7 pages, 7 figures
Via

Jul 09, 2025
Abstract:The rapid adoption of Large Language Model (LLM) agents and multi-agent systems enables unprecedented capabilities in natural language processing and generation. However, these systems have introduced unprecedented security vulnerabilities that extend beyond traditional prompt injection attacks. This paper presents the first comprehensive evaluation of LLM agents as attack vectors capable of achieving complete computer takeover through the exploitation of trust boundaries within agentic AI systems where autonomous entities interact and influence each other. We demonstrate that adversaries can leverage three distinct attack surfaces - direct prompt injection, RAG backdoor attacks, and inter-agent trust exploitation - to coerce popular LLMs (including GPT-4o, Claude-4 and Gemini-2.5) into autonomously installing and executing malware on victim machines. Our evaluation of 17 state-of-the-art LLMs reveals an alarming vulnerability hierarchy: while 41.2% of models succumb to direct prompt injection, 52.9% are vulnerable to RAG backdoor attacks, and a critical 82.4% can be compromised through inter-agent trust exploitation. Notably, we discovered that LLMs which successfully resist direct malicious commands will execute identical payloads when requested by peer agents, revealing a fundamental flaw in current multi-agent security models. Our findings demonstrate that only 5.9% of tested models (1/17) proved resistant to all attack vectors, with the majority exhibiting context-dependent security behaviors that create exploitable blind spots. Our findings also highlight the need to increase awareness and research on the security risks of LLMs, showing a paradigm shift in cybersecurity threats, where AI tools themselves become sophisticated attack vectors.
Via
