What is Generative AI? Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Papers and Code
Apr 03, 2025
Abstract:Artificial intelligence (AI) has emerged as a transformative technology with immense potential to reshape the next-generation of wireless networks. By leveraging advanced algorithms and machine learning techniques, AI offers unprecedented capabilities in optimizing network performance, enhancing data processing efficiency, and enabling smarter decision-making processes. However, existing AI solutions face significant challenges in terms of robustness and interpretability. Specifically, current AI models exhibit substantial performance degradation in dynamic environments with varying data distributions, and the black-box nature of these algorithms raises concerns regarding safety, transparency, and fairness. This presents a major challenge in integrating AI into practical communication systems. Recently, a novel type of neural network, known as the liquid neural networks (LNNs), has been designed from first principles to address these issues. In this paper, we explore the potential of LNNs in telecommunications. First, we illustrate the mechanisms of LNNs and highlight their unique advantages over traditional networks. Then we unveil the opportunities that LNNs bring to future wireless networks. Furthermore, we discuss the challenges and design directions for the implementation of LNNs. Finally, we summarize the performance of LNNs in two case studies.
* 15 pages, 5 figures. Accepted by ZTE Communications
Via

Apr 03, 2025
Abstract:Harmful text detection has become a crucial task in the development and deployment of large language models, especially as AI-generated content continues to expand across digital platforms. This study proposes a joint retrieval framework that integrates pre-trained language models with knowledge graphs to improve the accuracy and robustness of harmful text detection. Experimental results demonstrate that the joint retrieval approach significantly outperforms single-model baselines, particularly in low-resource training scenarios and multilingual environments. The proposed method effectively captures nuanced harmful content by leveraging external contextual information, addressing the limitations of traditional detection models. Future research should focus on optimizing computational efficiency, enhancing model interpretability, and expanding multimodal detection capabilities to better tackle evolving harmful content patterns. This work contributes to the advancement of AI safety, ensuring more trustworthy and reliable content moderation systems.
Via

Apr 03, 2025
Abstract:The rise of Generative AI, and Large Language Models (LLMs) in particular, is fundamentally changing cognitive processes in knowledge work, raising critical questions about their impact on human reasoning and problem-solving capabilities. As these AI systems become increasingly integrated into workflows, they offer unprecedented opportunities for augmenting human thinking while simultaneously risking cognitive erosion through passive consumption of generated answers. This tension is particularly pronounced in open-ended tasks, where effective solutions require deep contextualization and integration of domain knowledge. Unlike structured tasks with established metrics, measuring the quality of human-LLM interaction in such open-ended tasks poses significant challenges due to the absence of ground truth and the iterative nature of solution development. To address this, we present a framework that analyzes interaction patterns along two dimensions: cognitive activity mode (exploration vs. exploitation) and cognitive engagement mode (constructive vs. detrimental). This framework provides systematic measurements to evaluate when LLMs are effective tools for thought rather than substitutes for human cognition, advancing theoretical understanding and practical guidance for developing AI systems that protect and augment human cognitive capabilities.
* Accepted at Tools for Thought Workshop (CHI'25)
Via

Apr 03, 2025
Abstract:As large language models (LLMs) and generative AI become widely adopted, guardrails have emerged as a key tool to ensure their safe use. However, adding guardrails isn't without tradeoffs; stronger security measures can reduce usability, while more flexible systems may leave gaps for adversarial attacks. In this work, we explore whether current guardrails effectively prevent misuse while maintaining practical utility. We introduce a framework to evaluate these tradeoffs, measuring how different guardrails balance risk, security, and usability, and build an efficient guardrail. Our findings confirm that there is no free lunch with guardrails; strengthening security often comes at the cost of usability. To address this, we propose a blueprint for designing better guardrails that minimize risk while maintaining usability. We evaluate various industry guardrails, including Azure Content Safety, Bedrock Guardrails, OpenAI's Moderation API, Guardrails AI, Nemo Guardrails, and Enkrypt AI guardrails. Additionally, we assess how LLMs like GPT-4o, Gemini 2.0-Flash, Claude 3.5-Sonnet, and Mistral Large-Latest respond under different system prompts, including simple prompts, detailed prompts, and detailed prompts with chain-of-thought (CoT) reasoning. Our study provides a clear comparison of how different guardrails perform, highlighting the challenges in balancing security and usability.
Via

Apr 03, 2025
Abstract:Over the past ten years, the application of artificial intelligence (AI) and machine learning (ML) in engineering domains has gained significant popularity, showcasing their potential in data-driven contexts. However, the complexity and diversity of engineering problems often require the development of domain-specific AI approaches, which are frequently hindered by a lack of systematic methodologies, scalability, and robustness during the development process. To address this gap, this paper introduces the "ABCDE" as the key elements of Engineering AI and proposes a unified, systematic engineering AI ecosystem framework, including eight essential layers, along with attributes, goals, and applications, to guide the development and deployment of AI solutions for specific engineering needs. Additionally, key challenges are examined, and nine future research directions are highlighted. By providing a comprehensive perspective, this paper aims to advance the strategic implementation of AI, fostering the development of next-generation engineering AI solutions.
Via

Apr 03, 2025
Abstract:This paper introduces a self-learning agent that integrates LLaMA 3.2 with a Progressive Neural Network (PNN) for continual learning in conversational AI and code generation. The framework dynamically collects data, fine-tunes tasks with minimal samples, and leverages Meta-Learning for rapid adaptation. LoRA optimizes fine-tuning, while Elastic Weight Consolidation (EWC) enhances knowledge retention. Experimental results demonstrate improved adaptability and memory stability, positioning this approach as a scalable step toward Artificial General Intelligence (AGI).
* 7 pages, 2 figures, focuses on continual learning with PNN and LLaMA.
Experiments demonstrate scalability and lifelong learning capabilities
Via

Apr 03, 2025
Abstract:This study introduces a benchmarking methodology designed to evaluate the performance of AI-driven recruitment sourcing tools. We created and utilized a dataset to perform a comparative analysis of search results generated by leading AI-based solutions, LinkedIn Recruiter, and our proprietary system, Pearch.ai. Human experts assessed the relevance of the returned candidates, and an Elo rating system was applied to quantitatively measure each tool's comparative performance. Our findings indicate that AI-driven recruitment sourcing tools consistently outperform LinkedIn Recruiter in candidate relevance, with Pearch.ai achieving the highest performance scores. Furthermore, we found a strong alignment between AI-based evaluations and human judgments, highlighting the potential for advanced AI technologies to substantially enhance talent acquisition effectiveness. Code and supporting data are publicly available at https://github.com/vslaykovsky/ai-sourcing-benchmark
Via

Apr 02, 2025
Abstract:Generative AI models offer powerful capabilities but often lack transparency, making it difficult to interpret their output. This is critical in cases involving artistic or copyrighted content. This work introduces a search-inspired approach to improve the interpretability of these models by analysing the influence of training data on their outputs. Our method provides observational interpretability by focusing on a model's output rather than on its internal state. We consider both raw data and latent-space embeddings when searching for the influence of data items in generated content. We evaluate our method by retraining models locally and by demonstrating the method's ability to uncover influential subsets in the training data. This work lays the groundwork for future extensions, including user-based evaluations with domain experts, which is expected to improve observational interpretability further.
Via

Apr 03, 2025
Abstract:As the interplay between human-generated and synthetic data evolves, new challenges arise in scientific discovery concerning the integrity of the data and the stability of the models. In this work, we examine the role of synthetic data as opposed to that of real experimental data for scientific research. Our analyses indicate that nearly three-quarters of experimental datasets available on open-access platforms have relatively low adoption rates, opening new opportunities to enhance their discoverability and usability by automated methods. Additionally, we observe an increasing difficulty in distinguishing synthetic from real experimental data. We propose supplementing ongoing efforts in automating synthetic data detection by increasing the focus on watermarking real experimental data, thereby strengthening data traceability and integrity. Our estimates suggest that watermarking even less than half of the real world data generated annually could help sustain model robustness, while promoting a balanced integration of synthetic and human-generated content.
Via

Apr 02, 2025
Abstract:The exponential growth of AI-generated images (AIGIs) underscores the urgent need for robust and generalizable detection methods. In this paper, we establish two key principles for AIGI detection through systematic analysis: \textbf{(1) All Patches Matter:} Unlike conventional image classification where discriminative features concentrate on object-centric regions, each patch in AIGIs inherently contains synthetic artifacts due to the uniform generation process, suggesting that every patch serves as an important artifact source for detection. \textbf{(2) More Patches Better}: Leveraging distributed artifacts across more patches improves detection robustness by capturing complementary forensic evidence and reducing over-reliance on specific patches, thereby enhancing robustness and generalization. However, our counterfactual analysis reveals an undesirable phenomenon: naively trained detectors often exhibit a \textbf{Few-Patch Bias}, discriminating between real and synthetic images based on minority patches. We identify \textbf{Lazy Learner} as the root cause: detectors preferentially learn conspicuous artifacts in limited patches while neglecting broader artifact distributions. To address this bias, we propose the \textbf{P}anoptic \textbf{P}atch \textbf{L}earning (PPL) framework, involving: (1) Random Patch Replacement that randomly substitutes synthetic patches with real counterparts to compel models to identify artifacts in underutilized regions, encouraging the broader use of more patches; (2) Patch-wise Contrastive Learning that enforces consistent discriminative capability across all patches, ensuring uniform utilization of all patches. Extensive experiments across two different settings on several benchmarks verify the effectiveness of our approach.
Via
