Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Recent advances in large language models (LLMs) are transforming data-intensive domains, with finance representing a high-stakes environment where transparent and reproducible analysis of heterogeneous signals is essential. Traditional quantitative methods remain vulnerable to survivorship bias, while many AI-driven approaches struggle with signal integration, reproducibility, and computational efficiency. We introduce MASFIN, a modular multi-agent framework that integrates LLMs with structured financial metrics and unstructured news, while embedding explicit bias-mitigation protocols. The system leverages GPT-4.1-nano for reproducability and cost-efficient inference and generates weekly portfolios of 15-30 equities with allocation weights optimized for short-term performance. In an eight-week evaluation, MASFIN delivered a 7.33% cumulative return, outperforming the S&P 500, NASDAQ-100, and Dow Jones benchmarks in six of eight weeks, albeit with higher volatility. These findings demonstrate the promise of bias-aware, generative AI frameworks for financial forecasting and highlight opportunities for modular multi-agent design to advance practical, transparent, and reproducible approaches in quantitative finance.
Large language models (LLMs) can produce text that closely resembles human writing. This capability raises concerns about misuse, including disinformation and content manipulation. Detecting AI-generated text is essential to maintain authenticity and prevent malicious applications. Existing research has addressed detection in multiple languages, but the Bengali language remains largely unexplored. Bengali's rich vocabulary and complex structure make distinguishing human-written and AI-generated text particularly challenging. This study investigates five transformer-based models: XLMRoBERTa-Large, mDeBERTaV3-Base, BanglaBERT-Base, IndicBERT-Base and MultilingualBERT-Base. Zero-shot evaluation shows that all models perform near chance levels (around 50% accuracy) and highlight the need for task-specific fine-tuning. Fine-tuning significantly improves performance, with XLM-RoBERTa, mDeBERTa and MultilingualBERT achieving around 91% on both accuracy and F1-score. IndicBERT demonstrates comparatively weaker performance, indicating limited effectiveness in fine-tuning for this task. This work advances AI-generated text detection in Bengali and establishes a foundation for building robust systems to counter AI-generated content.
The fast evolution of generative models has heightened the demand for reliable detection of AI-generated images. To tackle this challenge, we introduce FUSE, a hybrid system that combines spectral features extracted through Fast Fourier Transform with semantic features obtained from the CLIP's Vision encoder. The features are fused into a joint representation and trained progressively in two stages. Evaluations on GenImage, WildFake, DiTFake, GPT-ImgEval and Chameleon datasets demonstrate strong generalization across multiple generators. Our FUSE (Stage 1) model demonstrates state-of-the-art results on the Chameleon benchmark. It also attains 91.36% mean accuracy on the GenImage dataset, 88.71% accuracy across all tested generators, and a mean Average Precision of 94.96%. Stage 2 training further improves performance for most generators. Unlike existing methods, which often perform poorly on high-fidelity images in Chameleon, our approach maintains robustness across diverse generators. These findings highlight the benefits of integrating spectral and semantic features for generalized detection of images generated by AI.
Generative Artificial Intelligence (GAI) has experienced exponential growth in recent years, partly facilitated by the abundance of large-scale open-source datasets. These datasets are often built using unrestricted and opaque data collection practices. While most literature focuses on the development and applications of GAI models, the ethical and legal considerations surrounding the creation of these datasets are often neglected. In addition, as datasets are shared, edited, and further reproduced online, information about their origin, legitimacy, and safety often gets lost. To address this gap, we introduce the Compliance Rating Scheme (CRS), a framework designed to evaluate dataset compliance with critical transparency, accountability, and security principles. We also release an open-source Python library built around data provenance technology to implement this framework, allowing for seamless integration into existing dataset-processing and AI training pipelines. The library is simultaneously reactive and proactive, as in addition to evaluating the CRS of existing datasets, it equally informs responsible scraping and construction of new datasets.
Automating end-to-end data science pipeline with AI agents still stalls on two gaps: generating insightful, diverse visual evidence and assembling it into a coherent, professional report. We present A2P-Vis, a two-part, multi-agent pipeline that turns raw datasets into a high-quality data-visualization report. The Data Analyzer orchestrates profiling, proposes diverse visualization directions, generates and executes plotting code, filters low-quality figures with a legibility checker, and elicits candidate insights that are automatically scored for depth, correctness, specificity, depth and actionability. The Presenter then orders topics, composes chart-grounded narratives from the top-ranked insights, writes justified transitions, and revises the document for clarity and consistency, yielding a coherent, publication-ready report. Together, these agents convert raw data into curated materials (charts + vetted insights) and into a readable narrative without manual glue work. We claim that by coupling a quality-assured Analyzer with a narrative Presenter, A2P-Vis operationalizes co-analysis end-to-end, improving the real-world usefulness of automated data analysis for practitioners. For the complete dataset report, please see: https://www.visagent.org/api/output/f2a3486d-2c3b-4825-98d4-5af25a819f56.
AI image generators create both photorealistic images and stylized art, necessitating robust detectors that maintain performance under common post-processing transformations (JPEG compression, blur, downscaling). Existing methods optimize single metrics without addressing deployment-critical factors such as operating point selection and fixed-threshold robustness. This work addresses misleading robustness estimates by introducing a fixed-threshold evaluation protocol that holds decision thresholds, selected once on clean validation data, fixed across all post-processing transformations. Traditional methods retune thresholds per condition, artificially inflating robustness estimates and masking deployment failures. We report deployment-relevant performance at three operating points (Low-FPR, ROC-optimal, Best-F1) under systematic degradation testing using a lightweight CNN-ViT hybrid with gated fusion and optional frequency enhancement. Our evaluation exposes a statistically validated forensic-semantic spectrum: frequency-aided CNNs excel on pristine photos but collapse under compression (93.33% to 61.49%), whereas ViTs degrade minimally (92.86% to 88.36%) through robust semantic pattern recognition. Multi-seed experiments demonstrate that all architectures achieve 15% higher AUROC on artistic content (0.901-0.907) versus photorealistic images (0.747-0.759), confirming that semantic patterns provide fundamentally more reliable detection cues than forensic artifacts. Our hybrid approach achieves balanced cross-domain performance: 91.4% accuracy on tiny-genimage photos, 89.7% on AiArtData art/graphics, and 98.3% (competitive) on CIFAKE. Fixed-threshold evaluation eliminates retuning inflation, reveals genuine robustness gaps, and yields actionable deployment guidance: prefer CNNs for clean photo verification, ViTs for compressed content, and hybrids for art/graphics screening.
The rapid integration of generative AI into everyday life underscores the need to move beyond unidirectional alignment models that only adapt AI to human values. This workshop focuses on bidirectional human-AI alignment, a dynamic, reciprocal process where humans and AI co-adapt through interaction, evaluation, and value-centered design. Building on our past CHI 2025 BiAlign SIG and ICLR 2025 Workshop, this workshop will bring together interdisciplinary researchers from HCI, AI, social sciences and more domains to advance value-centered AI and reciprocal human-AI collaboration. We focus on embedding human and societal values into alignment research, emphasizing not only steering AI toward human values but also enabling humans to critically engage with and evolve alongside AI systems. Through talks, interdisciplinary discussions, and collaborative activities, participants will explore methods for interactive alignment, frameworks for societal impact evaluation, and strategies for alignment in dynamic contexts. This workshop aims to bridge the disciplines' gaps and establish a shared agenda for responsible, reciprocal human-AI futures.
While the technology for detecting AI-Generated Content (AIGC) images has advanced rapidly, the field still faces two core issues: poor reproducibility and insufficient gen eralizability, which hinder the practical application of such technologies. This study addresses these challenges by re viewing 7 key papers on AIGC detection, constructing a lightweight test dataset, and reproducing a representative detection method. Through this process, we identify the root causes of the reproducibility dilemma in the field: firstly, papers often omit implicit details such as prepro cessing steps and parameter settings; secondly, most detec tion methods overfit to exclusive features of specific gener ators rather than learning universal intrinsic features of AIGC images. Experimental results show that basic perfor mance can be reproduced when strictly following the core procedures described in the original papers. However, de tection performance drops sharply when preprocessing dis rupts key features or when testing across different genera tors. This research provides empirical evidence for improv ing the reproducibility of AIGC detection technologies and offers reference directions for researchers to disclose ex perimental details more comprehensively and verify the generalizability of their proposed methods.
Therapeutic discovery remains a formidable challenge, impeded by the fragmentation of specialized domains and the execution gap between computational design and physiological validation. Although generative AI offers promise, current models often function as passive assistants rather than as autonomous executors. Here, we introduce OrchestRA, a human-in-the-loop multi-agent platform that unifies biology, chemistry, and pharmacology into an autonomous discovery engine. Unlike static code generators, our agents actively execute simulations and reason the results to drive iterative optimization. Governed by an Orchestrator, a Biologist Agent leverages deep reasoning over a massive knowledge graph (>10 million associations) to pinpoint high-confidence targets; a Chemist Agent autonomously detects structural pockets for de novo design or drug repositioning; and a Pharmacologist Agent evaluates candidates via rigorous physiologically based pharmacokinetic (PBPK) simulations. This architecture establishes a dynamic feedback loop where pharmacokinetic and toxicity profiles directly trigger structural reoptimization. By seamlessly integrating autonomous execution with human guidance, OrchestRA democratizes therapeutic design, transforming drug discovery from a stochastic search to a programmable evidence-based engineering discipline.
Generative AI systems are quickly improving, now able to produce believable output in several modalities including images, text, and audio. However, this fast development has prompted increased scrutiny concerning user privacy and the use of copyrighted works in training. A recent attack on machine-learning models called membership inference lies at the crossroads of these two concerns. The attack is given as input a set of records and a trained model and seeks to identify which of those records may have been used to train the model. On one hand, this attack can be used to identify user data used to train a model, which may violate their privacy especially in sensitive applications such as models trained on medical data. On the other hand, this attack can be used by rights-holders as evidence that a company used their works without permission to train a model. Remarkably, it appears that no work has studied the effect of membership inference attacks (MIA) on generative music. Given that the music industry is worth billions of dollars and artists would stand to gain from being able to determine if their works were being used without permission, we believe this is a pressing issue to study. As such, in this work we begin a preliminary study into whether MIAs are effective on generative music. We study the effect of several existing attacks on MuseGAN, a popular and influential generative music model. Similar to prior work on generative audio MIAs, our findings suggest that music data is fairly resilient to known membership inference techniques.