Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Compared to search engine result pages (SERPs), AI-generated podcasts represent a relatively new and relatively more passive modality of information consumption, delivering narratives in a naturally engaging format. As these two media increasingly converge in everyday information-seeking behavior, it is essential to explore how their interaction influences user attitudes, particularly in contexts involving controversial, value-laden, and often debated topics. Addressing this need, we aim to understand how information mediums of present-day SERPs and AI-generated podcasts interact to shape the opinions of users. To this end, through a controlled user study (N=483), we investigated user attitudinal effects of consuming information via SERPs and AI-generated podcasts, focusing on how the sequence and modality of exposure shape user opinions. A majority of users in our study corresponded to attitude change outcomes, and we found an effect of sequence on attitude change. Our results further revealed a role of viewpoint bias and the degree of topic controversiality in shaping attitude change, although we found no effect of individual moderators.
Recent advances in generative modeling can create remarkably realistic synthetic videos, making it increasingly difficult for humans to distinguish them from real ones and necessitating reliable detection methods. However, two key limitations hinder the development of this field. \textbf{From the dataset perspective}, existing datasets are often limited in scale and constructed using outdated or narrowly scoped generative models, making it difficult to capture the diversity and rapid evolution of modern generative techniques. Moreover, the dataset construction process frequently prioritizes quantity over quality, neglecting essential aspects such as semantic diversity, scenario coverage, and technological representativeness. \textbf{From the benchmark perspective}, current benchmarks largely remain at the stage of dataset creation, leaving many fundamental issues and in-depth analysis yet to be systematically explored. Addressing this gap, we propose AIGVDBench, a benchmark designed to be comprehensive and representative, covering \textbf{31} state-of-the-art generation models and over \textbf{440,000} videos. By executing more than \textbf{1,500} evaluations on \textbf{33} existing detectors belonging to four distinct categories. This work presents \textbf{8 in-depth analyses} from multiple perspectives and identifies \textbf{4 novel findings} that offer valuable insights for future research. We hope this work provides a solid foundation for advancing the field of AI-generated video detection. Our benchmark is open-sourced at https://github.com/LongMa-2025/AIGVDBench.
Generative AI (GenAI) tools are transforming information seeking, but their fluent, authoritative responses risk overreliance and discourage independent verification and reasoning. Rather than replacing the cognitive work of users, GenAI systems should be designed to support and scaffold it. Therefore, this paper introduces an LLM-based conversational copilot designed to scaffold information evaluation rather than provide answers and foster digital literacy skills. In a pre-registered, randomised controlled trial (N=261) examining three interface conditions including a chat-based copilot, our mixed-methods analysis reveals that users engaged deeply with the copilot, demonstrating metacognitive reflection. However, the copilot did not significantly improve answer correctness or search engagement, largely due to a "time-on-chat vs. exploration" trade-off and users' bias toward positive information. Qualitative findings reveal tension between the copilot's Socratic approach and users' desire for efficiency. These results highlight both the promise and pitfalls of pedagogical copilots, and we outline design pathways to reconcile literacy goals with efficiency demands.
In the generative AI era, where even critical medical tasks are increasingly automated, radiology report generation (RRG) continues to rely on suboptimal metrics for quality assessment. Developing domain-specific metrics has therefore been an active area of research, yet it remains challenging due to the lack of a unified, well-defined framework to assess their robustness and applicability in clinical contexts. To address this, we present CTest-Metric, a first unified metric assessment framework with three modules determining the clinical feasibility of metrics for CT RRG. The modules test: (i) Writing Style Generalizability (WSG) via LLM-based rephrasing; (ii) Synthetic Error Injection (SEI) at graded severities; and (iii) Metrics-vs-Expert correlation (MvE) using clinician ratings on 175 "disagreement" cases. Eight widely used metrics (BLEU, ROUGE, METEOR, BERTScore-F1, F1-RadGraph, RaTEScore, GREEN Score, CRG) are studied across seven LLMs built on a CT-CLIP encoder. Using our novel framework, we found that lexical NLG metrics are highly sensitive to stylistic variations; GREEN Score aligns best with expert judgments (Spearman~0.70), while CRG shows negative correlation; and BERTScore-F1 is least sensitive to factual error injection. We will release the framework, code, and allowable portion of the anonymized evaluation data (rephrased/error-injected CT reports), to facilitate reproducible benchmarking and future metric development.
In this article, we argue that understanding the collective behavior of agents based on large language models (LLMs) is an essential area of inquiry, with important implications in terms of risks and benefits, impacting us as a society at many levels. We claim that the distinctive nature of LLMs--namely, their initialization with extensive pre-trained knowledge and implicit social priors, together with their capability of adaptation through in-context learning--motivates the need for an interactionist paradigm consisting of alternative theoretical foundations, methodologies, and analytical tools, in order to systematically examine how prior knowledge and embedded values interact with social context to shape emergent phenomena in multi-agent generative AI systems. We propose and discuss four directions that we consider crucial for the development and deployment of LLM-based collectives, focusing on theory, methods, and trans-disciplinary dialogue.
Our study examines how generative AI (GenAI) influences performance, creative self-efficacy, and cognitive load in architectural conceptual design tasks. Thirty-six student participants from Architectural Engineering and other disciplines completed a two-phase architectural design task, first independently and then with external tools (GenAI-assisted condition and control condition using an online repository of existing architectural projects). Design outcomes were evaluated by expert raters, while self-efficacy and cognitive load were self-reported after each phase. Difference-in-differences analyses revealed no overall performance advantage of GenAI across participants; however, subgroup analyses showed that GenAI significantly improved design performance for novice designers. In contrast, general creative self-efficacy declined for students using GenAI. Cognitive load did not differ significantly between conditions, though prompt usage patterns showed that iterative idea generation and visual feedback prompts were linked to greater reductions in cognitive load. These findings suggest that GenAI effectiveness depends on users' prior expertise and interaction strategies through prompting.
The evolution of Large Language Models (LLMs) into autonomous agents has expanded the scope of AI coding from localized code generation to complex, repository-level, and execution-driven problem solving. However, current benchmarks predominantly evaluate code logic in static contexts, neglecting the dynamic, full-process requirements of real-world engineering, particularly in backend development which demands rigorous environment configuration and service deployment. To address this gap, we introduce ABC-Bench, a benchmark explicitly designed to evaluate agentic backend coding within a realistic, executable workflow. Using a scalable automated pipeline, we curated 224 practical tasks spanning 8 languages and 19 frameworks from open-source repositories. Distinct from previous evaluations, ABC-Bench require the agents to manage the entire development lifecycle from repository exploration to instantiating containerized services and pass the external end-to-end API tests. Our extensive evaluation reveals that even state-of-the-art models struggle to deliver reliable performance on these holistic tasks, highlighting a substantial disparity between current model capabilities and the demands of practical backend engineering. Our code is available at https://github.com/OpenMOSS/ABC-Bench.
Civil aviation is a cornerstone of global transportation and commerce, and ensuring its safety, efficiency and customer satisfaction is paramount. Yet conventional Artificial Intelligence (AI) solutions in aviation remain siloed and narrow, focusing on isolated tasks or single modalities. They struggle to integrate heterogeneous data such as voice communications, radar tracks, sensor streams and textual reports, which limits situational awareness, adaptability, and real-time decision support. This paper introduces the vision of AviationLMM, a Large Multimodal foundation Model for civil aviation, designed to unify the heterogeneous data streams of civil aviation and enable understanding, reasoning, generation and agentic applications. We firstly identify the gaps between existing AI solutions and requirements. Secondly, we describe the model architecture that ingests multimodal inputs such as air-ground voice, surveillance, on-board telemetry, video and structured texts, and performs cross-modal alignment and fusion, and produces flexible outputs ranging from situation summaries and risk alerts to predictive diagnostics and multimodal incident reconstructions. In order to fully realize this vision, we identify key research opportunities to address, including data acquisition, alignment and fusion, pretraining, reasoning, trustworthiness, privacy, robustness to missing modalities, and synthetic scenario generation. By articulating the design and challenges of AviationLMM, we aim to boost the civil aviation foundation model progress and catalyze coordinated research efforts toward an integrated, trustworthy and privacy-preserving aviation AI ecosystem.
Ontological Knowledge Bases (OKBs) play a vital role in structuring domain-specific knowledge and serve as a foundation for effective knowledge management systems. However, their traditional manual development poses significant challenges related to scalability, consistency, and adaptability. Recent advancements in Generative AI, particularly Large Language Models (LLMs), offer promising solutions for automating and enhancing OKB development. This paper introduces a structured, iterative methodology leveraging LLMs to optimize knowledge acquisition, automate ontology artifact generation, and enable continuous refinement cycles. We demonstrate this approach through a detailed case study focused on developing a user context profile ontology within the vehicle sales domain. Key contributions include significantly accelerated ontology construction processes, improved ontological consistency, effective bias mitigation, and enhanced transparency in the ontology engineering process. Our findings highlight the transformative potential of integrating LLMs into ontology development, notably improving scalability, integration capabilities, and overall efficiency in knowledge management systems.
Artificial intelligence is rapidly transforming astronomical research, yet the scientific community has largely treated this transformation as an engineering challenge rather than an epistemological one. This perspective article argues that philosophy of science offers essential tools for navigating AI's integration into astronomy--conceptual clarity about what "understanding" means, critical examination of assumptions about data and discovery, and frameworks for evaluating AI's roles across different research contexts. Drawing on an interdisciplinary workshop convening astronomers, philosophers, and computer scientists, we identify several tensions. First, the narrative that AI will "derive fundamental physics" from data misconstrues contemporary astronomy as equation-derivation rather than the observation-driven enterprise it is. Second, scientific understanding involves more than prediction--it requires narrative construction, contextual judgment, and communicative achievement that current AI architectures struggle to provide. Third, because narrative and judgment matter, human peer review remains essential--yet AI-generated content flooding the literature threatens our capacity to identify genuine insight. Fourth, while AI excels at well-defined problem-solving, the ill-defined problem-finding that drives breakthroughs appears to require capacities beyond pattern recognition. Fifth, as AI accelerates what is feasible, pursuitworthiness criteria risk shifting toward what AI makes easy rather than what is genuinely important. We propose "pragmatic understanding" as a framework for integration--recognizing AI as a tool that extends human cognition while requiring new norms for validation and epistemic evaluation. Engaging with these questions now may help the community shape the transformation rather than merely react to it.