What is Generative AI? Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Papers and Code
Apr 22, 2025
Abstract:There has been enormous interest in generative AI since ChatGPT was launched in 2022. However, there are concerns about the accuracy and consistency of the outputs of generative AI. We have carried out an exploratory study on the application of this new technology in research data processing. We identified tasks for which rule-based or traditional machine learning approaches were difficult to apply, and then performed these tasks using generative AI. We demonstrate the feasibility of using the generative AI model Claude 3 Opus in three research projects involving complex data processing tasks: 1) Information extraction: We extract plant species names from historical seedlists (catalogues of seeds) published by botanical gardens. 2) Natural language understanding: We extract certain data points (name of drug, name of health indication, relative effectiveness, cost-effectiveness, etc.) from documents published by Health Technology Assessment organisations in the EU. 3) Text classification: We assign industry codes to projects on the crowdfunding website Kickstarter. We share the lessons we learnt from these use cases: How to determine if generative AI is an appropriate tool for a given data processing task, and if so, how to maximise the accuracy and consistency of the results obtained.
* 10 pages, 4 figures, 6 tables. Published in Proceedings of the 2024
IEEE 20th International Conference on e-Science (e-Science), Osaka, Japan
Via

Apr 22, 2025
Abstract:Text-based prompting remains the predominant interaction paradigm in generative AI, yet it often introduces friction for novice users such as small business owners (SBOs), who struggle to articulate creative goals in domain-specific contexts like advertising. Through a formative study with six SBOs in the United Kingdom, we identify three key challenges: difficulties in expressing brand intuition through prompts, limited opportunities for fine-grained adjustment and refinement during and after content generation, and the frequent production of generic content that lacks brand specificity. In response, we present ACAI (AI Co-Creation for Advertising and Inspiration), a multimodal generative AI tool designed to support novice designers by moving beyond traditional prompt interfaces. ACAI features a structured input system composed of three panels: Branding, Audience and Goals, and the Inspiration Board. These inputs allow users to convey brand-relevant context and visual preferences. This work contributes to HCI research on generative systems by showing how structured interfaces can foreground user-defined context, improve alignment, and enhance co-creative control in novice creative workflows.
* Accepted at CHI'25 Workshop on Designing and Developing User
Interfaces with AI
Via

Apr 22, 2025
Abstract:Retrieval Augmented Generation (RAG) has emerged as a powerful application of Large Language Models (LLMs), revolutionizing information search and consumption. RAG systems combine traditional search capabilities with LLMs to generate comprehensive answers to user queries, ideally with accurate citations. However, in our experience of developing a RAG product, LLMs often struggle with source attribution, aligning with other industry studies reporting citation accuracy rates of only about 74% for popular generative search engines. To address this, we present efficient post-processing algorithms to improve citation accuracy in LLM-generated responses, with minimal impact on latency and cost. Our approaches cross-check generated citations against retrieved articles using methods including keyword + semantic matching, fine tuned model with BERTScore, and a lightweight LLM-based technique. Our experimental results demonstrate a relative improvement of 15.46% in the overall accuracy metrics of our RAG system. This significant enhancement potentially enables a shift from our current larger language model to a relatively smaller model that is approximately 12x more cost-effective and 3x faster in inference time, while maintaining comparable performance. This research contributes to enhancing the reliability and trustworthiness of AI-generated content in information retrieval and summarization tasks which is critical to gain customer trust especially in commercial products.
Via

Apr 21, 2025
Abstract:The evaluation of Generative AI (GenAI) systems plays a critical role in public policy and decision-making, yet existing methods are often limited by reliance on benchmark-driven, point-estimate comparisons that fail to capture uncertainty and broader societal impacts. This paper argues for the use of Bayesian statistics as a principled framework to address these challenges. Bayesian methods enable the integration of domain expertise through prior elicitation, allow for continuous learning from new data, and provide robust uncertainty quantification via posterior inference. We demonstrate how Bayesian inference can be applied to GenAI evaluation, particularly in incorporating stakeholder perspectives to enhance fairness, transparency, and reliability. Furthermore, we discuss Bayesian workflows as an iterative process for model validation and refinement, ensuring robust assessments of GenAI systems in dynamic, real-world contexts.
* To be presented at ACM CHI 2025 workshop STAIG
Via

Apr 21, 2025
Abstract:The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations such as knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
Via

Apr 21, 2025
Abstract:Eye-tracking analysis plays a vital role in medical imaging, providing key insights into how radiologists visually interpret and diagnose clinical cases. In this work, we first analyze radiologists' attention and agreement by measuring the distribution of various eye-movement patterns, including saccades direction, amplitude, and their joint distribution. These metrics help uncover patterns in attention allocation and diagnostic strategies. Furthermore, we investigate whether and how doctors' gaze behavior shifts when viewing authentic (Real) versus deep-learning-generated (Fake) images. To achieve this, we examine fixation bias maps, focusing on first, last, short, and longest fixations independently, along with detailed saccades patterns, to quantify differences in gaze distribution and visual saliency between authentic and synthetic images.
* This paper was accepted at ETRA 2025 Japan
Via

Apr 21, 2025
Abstract:While large language models (LLMs) have been widely applied to code generation, they struggle with generating entire deep learning projects, which are characterized by complex structures, longer functions, and stronger reliance on domain knowledge than general-purpose code. An open-domain LLM often lacks coherent contextual guidance and domain expertise for specific projects, making it challenging to produce complete code that fully meets user requirements. In this paper, we propose a novel planning-guided code generation method, DLCodeGen, tailored for generating deep learning projects. DLCodeGen predicts a structured solution plan, offering global guidance for LLMs to generate the project. The generated plan is then leveraged to retrieve semantically analogous code samples and subsequently abstract a code template. To effectively integrate these multiple retrieval-augmented techniques, a comparative learning mechanism is designed to generate the final code. We validate the effectiveness of our approach on a dataset we build for deep learning code generation. Experimental results demonstrate that DLCodeGen outperforms other baselines, achieving improvements of 9.7% in CodeBLEU and 3.6% in human evaluation metrics.
Via

Apr 22, 2025
Abstract:As AI models become more embedded in critical sectors like finance, healthcare, and the military, their inscrutable behavior poses ever-greater risks to society. To mitigate this risk, we propose Guillotine, a hypervisor architecture for sandboxing powerful AI models -- models that, by accident or malice, can generate existential threats to humanity. Although Guillotine borrows some well-known virtualization techniques, Guillotine must also introduce fundamentally new isolation mechanisms to handle the unique threat model posed by existential-risk AIs. For example, a rogue AI may try to introspect upon hypervisor software or the underlying hardware substrate to enable later subversion of that control plane; thus, a Guillotine hypervisor requires careful co-design of the hypervisor software and the CPUs, RAM, NIC, and storage devices that support the hypervisor software, to thwart side channel leakage and more generally eliminate mechanisms for AI to exploit reflection-based vulnerabilities. Beyond such isolation at the software, network, and microarchitectural layers, a Guillotine hypervisor must also provide physical fail-safes more commonly associated with nuclear power plants, avionic platforms, and other types of mission critical systems. Physical fail-safes, e.g., involving electromechanical disconnection of network cables, or the flooding of a datacenter which holds a rogue AI, provide defense in depth if software, network, and microarchitectural isolation is compromised and a rogue AI must be temporarily shut down or permanently destroyed.
* To be published in the ACM SIGOPS 2025 Workshop on Hot Topics in
Operating Systems
Via

Apr 22, 2025
Abstract:The internet is undergoing a historical transformation from the "Internet of Websites" to the "Internet of AgentSites." While traditional Websites served as the foundation for information hosting and dissemination, a new frontier is emerging where AgentSites serve as the hubs of the internet, where each AgentSite hosts one or more AI agents that receive tasks, address them, and deliver actionable solutions, marking a significant shift in the digital landscape and representing the next generation of online ecosystems. Under this vision, AIOS, the AI Agent Operating System, serves as the server for the development, deployment and execution of AI agents, which is a fundamental infrastructure for the Internet of Agentsites. In this paper, we introduce AIOS Server, a runtime framework to host agents and enable global-scale collaboration among decentralized agents. AIOS Server provides a communication protocol leveraging the Model Context Protocol (MCP) and JSON-RPC to enable agent-agent or human-agent interactions. Each AIOS node operates as a server to host and execute agents, while supporting peer-to-peer coordination without reliance on centralized orchestration. Based on AIOS Server, we further present the world's first practically deployed Internet of Agentsites (AIOS-IoA), including AgentHub for agent registration and discovery and AgentChat for interactive communication, at https://planet.aios.foundation. The agent discovery mechanism based on Distributed Hash Tables (DHT) and a Gossip protocol serves as the search engine for the internet of agentsites. This work provides a practical foundation for building the Internet of Agentsites-a new paradigm where autonomous agents become first-class citizens of the web. The implementation is available at https://github.com/agiresearch/AIOS.Server and will be integrated into the AIOS main branch at https://github.com/agiresearch/AIOS.
Via

Apr 22, 2025
Abstract:Explaining unsolvability of planning problems is of significant research interest in Explainable AI Planning. AI planning literature has reported several research efforts on generating explanations of solutions to planning problems. However, explaining the unsolvability of planning problems remains a largely open and understudied problem. A widely practiced approach to plan generation and automated problem solving, in general, is to decompose tasks into sub-problems that help progressively converge towards the goal. In this paper, we propose to adopt the same philosophy of sub-problem identification as a mechanism for analyzing and explaining unsolvability of planning problems in hybrid systems. In particular, for a given unsolvable planning problem, we propose to identify common waypoints, which are universal obstacles to plan existence; in other words, they appear on every plan from the source to the planning goal. This work envisions such waypoints as sub-problems of the planning problem and the unreachability of any of these waypoints as an explanation for the unsolvability of the original planning problem. We propose a novel method of waypoint identification by casting the problem as an instance of the longest common subsequence problem, a widely popular problem in computer science, typically considered as an illustrative example for the dynamic programming paradigm. Once the waypoints are identified, we perform symbolic reachability analysis on them to identify the earliest unreachable waypoint and report it as the explanation of unsolvability. We present experimental results on unsolvable planning problems in hybrid domains.
Via
