Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Zero-shot detection methods for AI-generated text typically aggregate token-level statistics across entire sequences, overlooking the temporal dynamics inherent to autoregressive generation. We analyze over 120k text samples and reveal Late-Stage Volatility Decay: AI-generated text exhibits rapidly stabilizing log probability fluctuations as generation progresses, while human writing maintains higher variability throughout. This divergence peaks in the second half of sequences, where AI-generated text shows 24--32\% lower volatility. Based on this finding, we propose two simple features: Derivative Dispersion and Local Volatility, which computed exclusively from late-stage statistics. Without perturbation sampling or additional model access, our method achieves state-of-the-art performance on EvoBench and MAGE benchmarks and demonstrates strong complementarity with existing global methods.
Large Language Models (LLMs) can generate highly persuasive text, raising concerns about their misuse for propaganda, manipulation, and other harmful purposes. This leads us to our central question: Is LLM-generated persuasion more difficult to automatically detect than human-written persuasion? To address this, we categorize controllable generation approaches for producing persuasive content with LLMs and introduce Persuaficial, a high-quality multilingual benchmark covering six languages: English, German, Polish, Italian, French and Russian. Using this benchmark, we conduct extensive empirical evaluations comparing human-authored and LLM-generated persuasive texts. We find that although overtly persuasive LLM-generated texts can be easier to detect than human-written ones, subtle LLM-generated persuasion consistently degrades automatic detection performance. Beyond detection performance, we provide the first comprehensive linguistic analysis contrasting human and LLM-generated persuasive texts, offering insights that may guide the development of more interpretable and robust detection tools.
Learning analytics dashboards (LADs) aim to support students' regulation of learning by translating complex data into feedback. Yet students, especially those with lower self-regulated learning (SRL) competence, often struggle to engage with and interpret analytics feedback. Conversational generative artificial intelligence (GenAI) assistants have shown potential to scaffold this process through real-time, personalised, dialogue-based support. Further advancing this potential, we explored authentic dialogues between students and GenAI assistant integrated into LAD during a 10-week semester. The analysis focused on questions students with different SRL levels posed, the relevance and quality of the assistant's answers, and how students perceived the assistant's role in their learning. Findings revealed distinct query patterns. While low SRL students sought clarification and reassurance, high SRL students queried technical aspects and requested personalised strategies. The assistant provided clear and reliable explanations but limited in personalisation, handling emotionally charged queries, and integrating multiple data points for tailored responses. Findings further extend that GenAI interventions can be especially valuable for low SRL students, offering scaffolding that supports engagement with feedback and narrows gaps with their higher SRL peers. At the same time, students' reflections underscored the importance of trust, need for greater adaptivity, context-awareness, and technical refinement in future systems.
In this work, we examine hateful memes from three complementary angles - how to detect them, how to explain their content and how to intervene them prior to being posted - by applying a range of strategies built on top of generative AI models. To the best of our knowledge, explanation and intervention have typically been studied separately from detection, which does not reflect real-world conditions. Further, since curating large annotated datasets for meme moderation is prohibitively expensive, we propose a novel framework that leverages task-specific generative multimodal agents and the few-shot adaptability of large multimodal models to cater to different types of memes. We believe this is the first work focused on generalizable hateful meme moderation under limited data conditions, and has strong potential for deployment in real-world production scenarios. Warning: Contains potentially toxic contents.
While AI innovation accelerates rapidly, the intellectual process behind breakthroughs -- how researchers identify gaps, synthesize prior work, and generate insights -- remains poorly understood. The lack of structured data on scientific reasoning hinders systematic analysis and development of AI research agents. We introduce Sci-Reasoning, the first dataset capturing the intellectual synthesis behind high-quality AI research. Using community-validated quality signals and an LLM-accelerated, human-verified pipeline, we trace Oral and Spotlight papers across NeurIPS, ICML, and ICLR (2023-2025) to its key predecessors, articulating specific reasoning links in a structured format. Our analysis identifies 15 distinct thinking patterns, with three dominant strategies accounting for 52.7%: Gap-Driven Reframing (24.2%), Cross-Domain Synthesis (18.0%), and Representation Shift (10.5%). The most powerful innovation recipes combine multiple patterns: Gap-Driven Reframing + Representation Shift, Cross-Domain Synthesis + Representation Shift, and Gap-Driven Reframing + Cross-Domain Synthesis. This dataset enables quantitative studies of scientific progress and provides structured reasoning trajectories for training the next generation AI research agents.
Pull request (PR) descriptions generated by AI coding agents are the primary channel for communicating code changes to human reviewers. However, the alignment between these messages and the actual changes remains unexplored, raising concerns about the trustworthiness of AI agents. To fill this gap, we analyzed 23,247 agentic PRs across five agents using PR message-code inconsistency (PR-MCI). We contributed 974 manually annotated PRs, found 406 PRs (1.7%) exhibited high PR-MCI, and identified eight PR-MCI types, revealing that descriptions claiming unimplemented changes was the most common issue (45.4%). Statistical tests confirmed that high-MCI PRs had 51.7% lower acceptance rates (28.3% vs. 80.0%) and took 3.5x longer to merge (55.8 vs. 16.0 hours). Our findings suggest that unreliable PR descriptions undermine trust in AI agents, highlighting the need for PR-MCI verification mechanisms and improved PR generation to enable trustworthy human-AI collaboration.
The rapid advancement of AI-generated content (AIGC) has escalated the threat of deepfakes, from facial manipulations to the synthesis of entire photorealistic human bodies. However, existing detection methods remain fragmented, specializing either in facial-region forgeries or full-body synthetic images, and consequently fail to generalize across the full spectrum of human image manipulations. We introduce HuForDet, a holistic framework for human image forgery detection, which features a dual-branch architecture comprising: (1) a face forgery detection branch that employs heterogeneous experts operating in both RGB and frequency domains, including an adaptive Laplacian-of-Gaussian (LoG) module designed to capture artifacts ranging from fine-grained blending boundaries to coarse-scale texture irregularities; and (2) a contextualized forgery detection branch that leverages a Multi-Modal Large Language Model (MLLM) to analyze full-body semantic consistency, enhanced with a confidence estimation mechanism that dynamically weights its contribution during feature fusion. We curate a human image forgery (HuFor) dataset that unifies existing face forgery data with a new corpus of full-body synthetic humans. Extensive experiments show that our HuForDet achieves state-of-the-art forgery detection performance and superior robustness across diverse human image forgeries.
The rapid advancement of generative models has significantly enhanced the quality of AI-generated images, raising concerns about misinformation and the erosion of public trust. Detecting AI-generated images has thus become a critical challenge, particularly in terms of generalizing to unseen generative models. Existing methods using frozen pre-trained CLIP models show promise in generalization but treat the image encoder as a basic feature extractor, failing to fully exploit its potential. In this paper, we perform an in-depth analysis of the frozen CLIP image encoder (CLIP-ViT), revealing that it effectively clusters real images in a high-level, abstract feature space. However, it does not truly possess the ability to distinguish between real and AI-generated images. Based on this analysis, we propose a Masking-based Pre-trained model Fine-Tuning (MPFT) strategy, which introduces a Texture-Aware Masking (TAM) mechanism to mask textured areas containing generative model-specific patterns during fine-tuning. This approach compels CLIP-ViT to attend to the "distributional deviations"from authentic images for AI-generated image detection, thereby achieving enhanced generalization performance. Extensive experiments on the GenImage and UniversalFakeDetect datasets demonstrate that our method, fine-tuned with only a minimal number of images, significantly outperforms existing approaches, achieving up to 98.2% and 94.6% average accuracy on the two datasets, respectively.
Generative artificial intelligence (GenAI) is diffusing rapidly, yet its adoption is strikingly unequal. Using nationally representative UK survey data from 2023 to 2024, we show that women adopt GenAI substantially less often than men because they perceive its societal risks differently. We construct a composite index capturing concerns about mental health, privacy, climate impact, and labor market disruption. This index explains between 9 and 18 percent of the variation in GenAI adoption and ranks among the strongest predictors for women across all age groups, surpassing digital literacy and education for young women. Intersectional analyses show that the largest disparities arise among younger, digitally fluent individuals with high societal risk concerns, where gender gaps in personal use exceed 45 percentage points. Using a synthetic twin panel design, we show that increased optimism about AI's societal impact raises GenAI use among young women from 13 percent to 33 percent, substantially narrowing the gender divide. These findings indicate that gendered perceptions of AI's social and ethical consequences, rather than access or capability, are the primary drivers of unequal GenAI adoption, with implications for productivity, skill formation, and economic inequality in an AI enabled economy.
The rapid development of large language models has led to an increase in AI-generated text, with students increasingly using LLM-generated content as their own work, which violates academic integrity. This paper presents an evaluation of AI text detection methods, including both traditional machine learning models and transformer-based architectures. We utilize two datasets, HC3 and DAIGT v2, to build a unified benchmark and apply a topic-based data split to prevent information leakage. This approach ensures robust generalization across unseen domains. Our experiments show that TF-IDF logistic regression achieves a reasonable baseline accuracy of 82.87%. However, deep learning models outperform it. The BiLSTM classifier achieves an accuracy of 88.86%, while DistilBERT achieves a similar accuracy of 88.11% with the highest ROC-AUC score of 0.96, demonstrating the strongest overall performance. The results indicate that contextual semantic modeling is significantly superior to lexical features and highlight the importance of mitigating topic memorization through appropriate evaluation protocols. The limitations of this work are primarily related to dataset diversity and computational constraints. In future work, we plan to expand dataset diversity and utilize parameter-efficient fine-tuning methods such as LoRA. We also plan to explore smaller or distilled models and employ more efficient batching strategies and hardware-aware optimization.