What is Generative AI? Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Papers and Code
May 09, 2025
Abstract:Large language models (LLMs) are rapidly pushing the limits of contemporary computing hardware. For example, training GPT-3 has been estimated to consume around 1300 MWh of electricity, and projections suggest future models may require city-scale (gigawatt) power budgets. These demands motivate exploration of computing paradigms beyond conventional von Neumann architectures. This review surveys emerging photonic hardware optimized for next-generation generative AI computing. We discuss integrated photonic neural network architectures (e.g., Mach-Zehnder interferometer meshes, lasers, wavelength-multiplexed microring resonators) that perform ultrafast matrix operations. We also examine promising alternative neuromorphic devices, including spiking neural network circuits and hybrid spintronic-photonic synapses, which combine memory and processing. The integration of two-dimensional materials (graphene, TMDCs) into silicon photonic platforms is reviewed for tunable modulators and on-chip synaptic elements. Transformer-based LLM architectures (self-attention and feed-forward layers) are analyzed in this context, identifying strategies and challenges for mapping dynamic matrix multiplications onto these novel hardware substrates. We then dissect the mechanisms of mainstream LLMs, such as ChatGPT, DeepSeek, and LLaMA, highlighting their architectural similarities and differences. We synthesize state-of-the-art components, algorithms, and integration methods, highlighting key advances and open issues in scaling such systems to mega-sized LLM models. We find that photonic computing systems could potentially surpass electronic processors by orders of magnitude in throughput and energy efficiency, but require breakthroughs in memory, especially for long-context windows and long token sequences, and in storage of ultra-large datasets.
* 36 pages, 22 figures
Via

May 09, 2025
Abstract:The construction of experimental datasets is essential for expanding the scope of data-driven scientific discovery. Recent advances in natural language processing (NLP) have facilitated automatic extraction of structured data from unstructured scientific literature. While existing approaches-multi-step and direct methods-offer valuable capabilities, they also come with limitations when applied independently. Here, we propose a novel hybrid text-mining framework that integrates the advantages of both methods to convert unstructured scientific text into structured data. Our approach first transforms raw text into entity-recognized text, and subsequently into structured form. Furthermore, beyond the overall data structuring framework, we also enhance entity recognition performance by introducing an entity marker-a simple yet effective technique that uses symbolic annotations to highlight target entities. Specifically, our entity marker-based hybrid approach not only consistently outperforms previous entity recognition approaches across three benchmark datasets (MatScholar, SOFC, and SOFC slot NER) but also improve the quality of final structured data-yielding up to a 58% improvement in entity-level F1 score and up to 83% improvement in relation-level F1 score compared to direct approach.
* 29 pages
Via

May 09, 2025
Abstract:The increasing demand for generative AI as Large Language Models (LLMs) services has driven the need for specialized hardware architectures that optimize computational efficiency and energy consumption. This paper evaluates the performance of the Tenstorrent Grayskull e75 RISC-V accelerator for basic linear algebra kernels at reduced numerical precision, a fundamental operation in LLM computations. We present a detailed characterization of Grayskull's execution model, gridsize, matrix dimensions, data formats, and numerical precision impact computational efficiency. Furthermore, we compare Grayskull's performance against state-of-the-art architectures with tensor acceleration, including Intel Sapphire Rapids processors and two NVIDIA GPUs (V100 and A100). Whilst NVIDIA GPUs dominate raw performance, Grayskull demonstrates a competitive trade-off between power consumption and computational throughput, reaching a peak of 1.55 TFLOPs/Watt with BF16.
* Accepted to the Computational Aspects of Deep Learning Workshop at
ISC High Performance 2025. To appear in the ISC High Performance 2025
Workshop Proceedings
Via

May 09, 2025
Abstract:The primary goal of this study is to develop and evaluate an innovative prompting technique, AnaQuest, for generating multiple-choice questions (MCQs) using a pre-trained large language model. In AnaQuest, the choice items are sentence-level assertions about complex concepts. The technique integrates formative and summative assessments. In the formative phase, students answer open-ended questions for target concepts in free text. For summative assessment, AnaQuest analyzes these responses to generate both correct and incorrect assertions. To evaluate the validity of the generated MCQs, Item Response Theory (IRT) was applied to compare item characteristics between MCQs generated by AnaQuest, a baseline ChatGPT prompt, and human-crafted items. An empirical study found that expert instructors rated MCQs generated by both AI models to be as valid as those created by human instructors. However, IRT-based analysis revealed that AnaQuest-generated questions - particularly those with incorrect assertions (foils) - more closely resembled human-crafted items in terms of difficulty and discrimination than those produced by ChatGPT.
* This is a pre-print version of a paper to appear in AIED2025
Via

May 08, 2025
Abstract:Creativity of generative AI models has been a subject of scientific debate in the last years, without a conclusive answer. In this paper, we study creativity from a practical perspective and introduce quantitative measures that help the user to choose a suitable AI model for a given task. We evaluated our measures on a number of popular image-to-image generation models, and the results of this suggest that our measures conform to human intuition.
Via

May 09, 2025
Abstract:The integration of AI into daily life has generated considerable attention and excitement, while also raising concerns about automating algorithmic harms and re-entrenching existing social inequities. While the responsible deployment of trustworthy AI systems is a worthy goal, there are many possible ways to realize it, from policy and regulation to improved algorithm design and evaluation. In fact, since AI trains on social data, there is even a possibility for everyday users, citizens, or workers to directly steer its behavior through Algorithmic Collective Action, by deliberately modifying the data they share with a platform to drive its learning process in their favor. This paper considers how these grassroots efforts to influence AI interact with methods already used by AI firms and governments to improve model trustworthiness. In particular, we focus on the setting where the AI firm deploys a differentially private model, motivated by the growing regulatory focus on privacy and data protection. We investigate how the use of Differentially Private Stochastic Gradient Descent (DPSGD) affects the collective's ability to influence the learning process. Our findings show that while differential privacy contributes to the protection of individual data, it introduces challenges for effective algorithmic collective action. We characterize lower bounds on the success of algorithmic collective action under differential privacy as a function of the collective's size and the firm's privacy parameters, and verify these trends experimentally by simulating collective action during the training of deep neural network classifiers across several datasets.
Via

May 08, 2025
Abstract:Small and medium sized businesses often struggle with data driven decision making do to a lack of advanced analytics tools, especially in African countries where they make up a majority of the workforce. Though many tools exist they are not designed to fit into the ways of working of SMB workers who are mobile first, have limited time to learn new workflows, and for whom social and business are tightly coupled. To address this, the Dukawalla prototype was created. This intelligent assistant bridges the gap between raw business data, and actionable insights by leveraging voice interaction and the power of generative AI. Dukawalla provides an intuitive way for business owners to interact with their data, aiding in informed decision making. This paper examines Dukawalla's deployment across SMBs in Nairobi, focusing on their experiences using this voice based assistant to streamline data collection and provide business insights
Via

May 08, 2025
Abstract:CLIP has emerged as a powerful multimodal model capable of connecting images and text through joint embeddings, but to what extent does it "see" the same way humans do - especially when interpreting artworks? In this paper, we investigate CLIP's ability to extract high-level semantic and stylistic information from paintings, including both human-created and AI-generated imagery. We evaluate its perception across multiple dimensions: content, scene understanding, artistic style, historical period, and the presence of visual deformations or artifacts. By designing targeted probing tasks and comparing CLIP's responses to human annotations and expert benchmarks, we explore its alignment with human perceptual and contextual understanding. Our findings reveal both strengths and limitations in CLIP's visual representations, particularly in relation to aesthetic cues and artistic intent. We further discuss the implications of these insights for using CLIP as a guidance mechanism during generative processes, such as style transfer or prompt-based image synthesis. Our work highlights the need for deeper interpretability in multimodal systems, especially when applied to creative domains where nuance and subjectivity play a central role.
Via

May 08, 2025
Abstract:3D scene generation seeks to synthesize spatially structured, semantically meaningful, and photorealistic environments for applications such as immersive media, robotics, autonomous driving, and embodied AI. Early methods based on procedural rules offered scalability but limited diversity. Recent advances in deep generative models (e.g., GANs, diffusion models) and 3D representations (e.g., NeRF, 3D Gaussians) have enabled the learning of real-world scene distributions, improving fidelity, diversity, and view consistency. Recent advances like diffusion models bridge 3D scene synthesis and photorealism by reframing generation as image or video synthesis problems. This survey provides a systematic overview of state-of-the-art approaches, organizing them into four paradigms: procedural generation, neural 3D-based generation, image-based generation, and video-based generation. We analyze their technical foundations, trade-offs, and representative results, and review commonly used datasets, evaluation protocols, and downstream applications. We conclude by discussing key challenges in generation capacity, 3D representation, data and annotations, and evaluation, and outline promising directions including higher fidelity, physics-aware and interactive generation, and unified perception-generation models. This review organizes recent advances in 3D scene generation and highlights promising directions at the intersection of generative AI, 3D vision, and embodied intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/hzxie/Awesome-3D-Scene-Generation.
Via

May 08, 2025
Abstract:Remarkable advancements in generative AI technology have given rise to a spectrum of novel deepfake categories with unprecedented leaps in their realism, and deepfakes are increasingly becoming a nuisance to law enforcement authorities and the general public. In particular, we observe alarming levels of confusion, deception, and loss of faith regarding multimedia content within society caused by face deepfakes, and existing deepfake detectors are struggling to keep up with the pace of improvements in deepfake generation. This is primarily due to their reliance on specific forgery artifacts, which limits their ability to generalise and detect novel deepfake types. To combat the spread of malicious face deepfakes, this paper proposes a new strategy that leverages coarse-to-fine spatial information, semantic information, and their interactions while ensuring feature distinctiveness and reducing the redundancy of the modelled features. A novel feature orthogonality-based disentanglement strategy is introduced to ensure branch-level and cross-branch feature disentanglement, which allows us to integrate multiple feature vectors without adding complexity to the feature space or compromising generalisation. Comprehensive experiments on three public benchmarks: FaceForensics++, Celeb-DF, and the Deepfake Detection Challenge (DFDC) show that these design choices enable the proposed approach to outperform current state-of-the-art methods by 5% on the Celeb-DF dataset and 7% on the DFDC dataset in a cross-dataset evaluation setting.
Via
