Gaze estimation is the process of predicting where a person is looking based on their eye movements.
The emergence of advanced multimodal large language models (MLLMs) has significantly enhanced AI assistants' ability to process complex information across modalities. Recently, egocentric videos, by directly capturing user focus, actions, and context in an unified coordinate, offer an exciting opportunity to enable proactive and personalized AI user experiences with MLLMs. However, existing benchmarks overlook the crucial role of gaze as an indicator of user intent. To address this gap, we introduce EgoGazeVQA, an egocentric gaze-guided video question answering benchmark that leverages gaze information to improve the understanding of longer daily-life videos. EgoGazeVQA consists of gaze-based QA pairs generated by MLLMs and refined by human annotators. Our experiments reveal that existing MLLMs struggle to accurately interpret user intentions. In contrast, our gaze-guided intent prompting methods significantly enhance performance by integrating spatial, temporal, and intent-related cues. We further conduct experiments on gaze-related fine-tuning and analyze how gaze estimation accuracy impacts prompting effectiveness. These results underscore the value of gaze for more personalized and effective AI assistants in egocentric settings.
With advancements in AI, new gaze estimation methods are exceeding state-of-the-art (SOTA) benchmarks, but their real-world application reveals a gap with commercial eye-tracking solutions. Factors like model size, inference time, and privacy often go unaddressed. Meanwhile, webcam-based eye-tracking methods lack sufficient accuracy, in particular due to head movement. To tackle these issues, we introduce We bEyeTrack, a framework that integrates lightweight SOTA gaze estimation models directly in the browser. It incorporates model-based head pose estimation and on-device few-shot learning with as few as nine calibration samples (k < 9). WebEyeTrack adapts to new users, achieving SOTA performance with an error margin of 2.32 cm on GazeCapture and real-time inference speeds of 2.4 milliseconds on an iPhone 14. Our open-source code is available at https://github.com/RedForestAi/WebEyeTrack.
Although appearance-based point-of-gaze (PoG) estimation has improved, the estimators still struggle to generalize across individuals due to personal differences. Therefore, person-specific calibration is required for accurate PoG estimation. However, calibrated PoG estimators are often sensitive to head pose variations. To address this, we investigate the key factors influencing calibrated estimators and explore pose-robust calibration strategies. Specifically, we first construct a benchmark, MobilePoG, which includes facial images from 32 individuals focusing on designated points under either fixed or continuously changing head poses. Using this benchmark, we systematically analyze how the diversity of calibration points and head poses influences estimation accuracy. Our experiments show that introducing a wider range of head poses during calibration improves the estimator's ability to handle pose variation. Building on this insight, we propose a dynamic calibration strategy in which users fixate on calibration points while moving their phones. This strategy naturally introduces head pose variation during a user-friendly and efficient calibration process, ultimately producing a better calibrated PoG estimator that is less sensitive to head pose variations than those using conventional calibration strategies. Codes and datasets are available at our project page.
Progress in remote PhotoPlethysmoGraphy (rPPG) is limited by the critical issues of existing publicly available datasets: small size, privacy concerns with facial videos, and lack of diversity in conditions. The paper introduces a novel comprehensive large-scale multi-view video dataset for rPPG and health biomarkers estimation. Our dataset comprises 3600 synchronized video recordings from 600 subjects, captured under varied conditions (resting and post-exercise) using multiple consumer-grade cameras at different angles. To enable multimodal analysis of physiological states, each recording is paired with a 100 Hz PPG signal and extended health metrics, such as electrocardiogram, arterial blood pressure, biomarkers, temperature, oxygen saturation, respiratory rate, and stress level. Using this data, we train an efficient rPPG model and compare its quality with existing approaches in cross-dataset scenarios. The public release of our dataset and model should significantly speed up the progress in the development of AI medical assistants.
We propose a novel 3D gaze redirection framework that leverages an explicit 3D eyeball structure. Existing gaze redirection methods are typically based on neural radiance fields, which employ implicit neural representations via volume rendering. Unlike these NeRF-based approaches, where the rotation and translation of 3D representations are not explicitly modeled, we introduce a dedicated 3D eyeball structure to represent the eyeballs with 3D Gaussian Splatting (3DGS). Our method generates photorealistic images that faithfully reproduce the desired gaze direction by explicitly rotating and translating the 3D eyeball structure. In addition, we propose an adaptive deformation module that enables the replication of subtle muscle movements around the eyes. Through experiments conducted on the ETH-XGaze dataset, we demonstrate that our framework is capable of generating diverse novel gaze images, achieving superior image quality and gaze estimation accuracy compared to previous state-of-the-art methods.
This study evaluates a smartphone-based, deep-learning eye-tracking algorithm by comparing its performance against a commercial infrared-based eye tracker, the Tobii Pro Nano. The aim is to investigate the feasibility of appearance-based gaze estimation under realistic mobile usage conditions. Key sensitivity factors, including age, gender, vision correction, lighting conditions, device type, and head position, were systematically analysed. The appearance-based algorithm integrates a lightweight convolutional neural network (MobileNet-V3) with a recurrent structure (Long Short-Term Memory) to predict gaze coordinates from grayscale facial images. Gaze data were collected from 51 participants using dynamic visual stimuli, and accuracy was measured using Euclidean distance. The deep learning model produced a mean error of 17.76 mm, compared to 16.53 mm for the Tobii Pro Nano. While overall accuracy differences were small, the deep learning-based method was more sensitive to factors such as lighting, vision correction, and age, with higher failure rates observed under low-light conditions among participants using glasses and in older age groups. Device-specific and positional factors also influenced tracking performance. These results highlight the potential of appearance-based approaches for mobile eye tracking and offer a reference framework for evaluating gaze estimation systems across varied usage conditions.
This report presents our solution to the Ego4D Natural Language Queries (NLQ) Challenge at CVPR 2025. Egocentric video captures the scene from the wearer's perspective, where gaze serves as a key non-verbal communication cue that reflects visual attention and offer insights into human intention and cognition. Motivated by this, we propose a novel approach, GazeNLQ, which leverages gaze to retrieve video segments that match given natural language queries. Specifically, we introduce a contrastive learning-based pretraining strategy for gaze estimation directly from video. The estimated gaze is used to augment video representations within proposed model, thereby enhancing localization accuracy. Experimental results show that GazeNLQ achieves R1@IoU0.3 and R1@IoU0.5 scores of 27.82 and 18.68, respectively. Our code is available at https://github.com/stevenlin510/GazeNLQ.
Event-based eye tracking holds significant promise for fine-grained cognitive state inference, offering high temporal resolution and robustness to motion artifacts, critical features for decoding subtle mental states such as attention, confusion, or fatigue. In this work, we introduce a model-agnostic, inference-time refinement framework designed to enhance the output of existing event-based gaze estimation models without modifying their architecture or requiring retraining. Our method comprises two key post-processing modules: (i) Motion-Aware Median Filtering, which suppresses blink-induced spikes while preserving natural gaze dynamics, and (ii) Optical Flow-Based Local Refinement, which aligns gaze predictions with cumulative event motion to reduce spatial jitter and temporal discontinuities. To complement traditional spatial accuracy metrics, we propose a novel Jitter Metric that captures the temporal smoothness of predicted gaze trajectories based on velocity regularity and local signal complexity. Together, these contributions significantly improve the consistency of event-based gaze signals, making them better suited for downstream tasks such as micro-expression analysis and mind-state decoding. Our results demonstrate consistent improvements across multiple baseline models on controlled datasets, laying the groundwork for future integration with multimodal affect recognition systems in real-world environments.
Eye gaze can provide rich information on human psychological activities, and has garnered significant attention in the field of Human-Robot Interaction (HRI). However, existing gaze estimation methods merely predict either the gaze direction or the Point-of-Gaze (PoG) on the screen, failing to provide sufficient information for a comprehensive six Degree-of-Freedom (DoF) gaze analysis in 3D space. Moreover, the variations of eye shape and structure among individuals also impede the generalization capability of these methods. In this study, we propose MAGE, a Multi-task Architecture for Gaze Estimation with an efficient calibration module, to predict the 6-DoF gaze information that is applicable for the real-word HRI. Our basic model encodes both the directional and positional features from facial images, and predicts gaze results with dedicated information flow and multiple decoders. To reduce the impact of individual variations, we propose a novel calibration module, namely Easy-Calibration, to fine-tune the basic model with subject-specific data, which is efficient to implement without the need of a screen. Experimental results demonstrate that our method achieves state-of-the-art performance on the public MPIIFaceGaze, EYEDIAP, and our built IMRGaze datasets.
Aiming to generalize the well-trained gaze estimation model to new target domains, Cross-domain Gaze Estimation (CDGE) is developed for real-world application scenarios. Existing CDGE methods typically extract the domain-invariant features to mitigate domain shift in feature space, which is proved insufficient by Generalized Label Shift (GLS) theory. In this paper, we introduce a novel GLS perspective to CDGE and modelize the cross-domain problem by label and conditional shift problem. A GLS correction framework is presented and a feasible realization is proposed, in which a importance reweighting strategy based on truncated Gaussian distribution is introduced to overcome the continuity challenges in label shift correction. To embed the reweighted source distribution to conditional invariant learning, we further derive a probability-aware estimation of conditional operator discrepancy. Extensive experiments on standard CDGE tasks with different backbone models validate the superior generalization capability across domain and applicability on various models of proposed method.