Abstract:This study evaluates a smartphone-based, deep-learning eye-tracking algorithm by comparing its performance against a commercial infrared-based eye tracker, the Tobii Pro Nano. The aim is to investigate the feasibility of appearance-based gaze estimation under realistic mobile usage conditions. Key sensitivity factors, including age, gender, vision correction, lighting conditions, device type, and head position, were systematically analysed. The appearance-based algorithm integrates a lightweight convolutional neural network (MobileNet-V3) with a recurrent structure (Long Short-Term Memory) to predict gaze coordinates from grayscale facial images. Gaze data were collected from 51 participants using dynamic visual stimuli, and accuracy was measured using Euclidean distance. The deep learning model produced a mean error of 17.76 mm, compared to 16.53 mm for the Tobii Pro Nano. While overall accuracy differences were small, the deep learning-based method was more sensitive to factors such as lighting, vision correction, and age, with higher failure rates observed under low-light conditions among participants using glasses and in older age groups. Device-specific and positional factors also influenced tracking performance. These results highlight the potential of appearance-based approaches for mobile eye tracking and offer a reference framework for evaluating gaze estimation systems across varied usage conditions.
Abstract:A significant limitation of current smartphone-based eye-tracking algorithms is their low accuracy when applied to video-type visual stimuli, as they are typically trained on static images. Also, the increasing demand for real-time interactive applications like games, VR, and AR on smartphones requires overcoming the limitations posed by resource constraints such as limited computational power, battery life, and network bandwidth. Therefore, we developed two new smartphone eye-tracking techniques for video-type visuals by combining Convolutional Neural Networks (CNN) with two different Recurrent Neural Networks (RNN), namely Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Our CNN+LSTM and CNN+GRU models achieved an average Root Mean Square Error of 0.955cm and 1.091cm, respectively. To address the computational constraints of smartphones, we developed an edge intelligence architecture to enhance the performance of smartphone-based eye tracking. We applied various optimisation methods like quantisation and pruning to deep learning models for better energy, CPU, and memory usage on edge devices, focusing on real-time processing. Using model quantisation, the model inference time in the CNN+LSTM and CNN+GRU models was reduced by 21.72% and 19.50%, respectively, on edge devices.