What is Few Shot Learning? Few-shot learning is a machine-learning paradigm where models are trained with limited labeled data.
Papers and Code
Aug 29, 2025
Abstract:Imitation learning enables intelligent systems to acquire complex behaviors with minimal supervision. However, existing methods often focus on short-horizon skills, require large datasets, and struggle to solve long-horizon tasks or generalize across task variations and distribution shifts. We propose a novel neuro-symbolic framework that jointly learns continuous control policies and symbolic domain abstractions from a few skill demonstrations. Our method abstracts high-level task structures into a graph, discovers symbolic rules via an Answer Set Programming solver, and trains low-level controllers using diffusion policy imitation learning. A high-level oracle filters task-relevant information to focus each controller on a minimal observation and action space. Our graph-based neuro-symbolic framework enables capturing complex state transitions, including non-spatial and temporal relations, that data-driven learning or clustering techniques often fail to discover in limited demonstration datasets. We validate our approach in six domains that involve four robotic arms, Stacking, Kitchen, Assembly, and Towers of Hanoi environments, and a distinct Automated Forklift domain with two environments. The results demonstrate high data efficiency with as few as five skill demonstrations, strong zero- and few-shot generalizations, and interpretable decision making.
* Accepted at CoRL 2025; to appear in PMLR
Via

Aug 29, 2025
Abstract:Large Language Models (LLMs) are increasingly employed in high-stakes decision-making tasks, such as loan approvals. While their applications expand across domains, LLMs struggle to process tabular data, ensuring fairness and delivering reliable predictions. In this work, we assess the performance and fairness of LLMs on serialized loan approval datasets from three geographically distinct regions: Ghana, Germany, and the United States. Our evaluation focuses on the model's zero-shot and in-context learning (ICL) capabilities. Our results reveal that the choice of serialization (Serialization refers to the process of converting tabular data into text formats suitable for processing by LLMs.) format significantly affects both performance and fairness in LLMs, with certain formats such as GReat and LIFT yielding higher F1 scores but exacerbating fairness disparities. Notably, while ICL improved model performance by 4.9-59.6% relative to zero-shot baselines, its effect on fairness varied considerably across datasets. Our work underscores the importance of effective tabular data representation methods and fairness-aware models to improve the reliability of LLMs in financial decision-making.
Via

Aug 29, 2025
Abstract:Humans usually show exceptional generalisation and discovery ability in the open world, when being shown uncommon new concepts. Whereas most existing studies in the literature focus on common typical data from closed sets, open-world novel discovery is under-explored in videos. In this paper, we are interested in asking: \textit{What if atypical unusual videos are exposed in the learning process?} To this end, we collect a new video dataset consisting of various types of unusual atypical data (\eg sci-fi, animation, \etc). To study how such atypical data may benefit open-world learning, we feed them into the model training process for representation learning. Focusing on three key tasks in open-world learning: out-of-distribution (OOD) detection, novel category discovery (NCD), and zero-shot action recognition (ZSAR), we found that even straightforward learning approaches with atypical data consistently improve performance across various settings. Furthermore, we found that increasing the categorical diversity of the atypical samples further boosts OOD detection performance. Additionally, in the NCD task, using a smaller yet more semantically diverse set of atypical samples leads to better performance compared to using a larger but more typical dataset. In the ZSAR setting, the semantic diversity of atypical videos helps the model generalise better to unseen action classes. These observations in our extensive experimental evaluations reveal the benefits of atypical videos for visual representation learning in the open world, together with the newly proposed dataset, encouraging further studies in this direction.
Via

Aug 28, 2025
Abstract:A fundamental aspect of the semantics of natural language is that novel meanings can be formed from the composition of previously known parts. Vision-language models (VLMs) have made significant progress in recent years, however, there is evidence that they are unable to perform this kind of composition. For example, given an image of a red cube and a blue cylinder, a VLM such as CLIP is likely to incorrectly label the image as a red cylinder or a blue cube, indicating it represents the image as a `bag-of-words' and fails to capture compositional semantics. Diffusion models have recently gained significant attention for their impressive generative abilities, and zero-shot classifiers based on diffusion models have been shown to perform competitively with CLIP in certain compositional tasks. In this work we explore whether the generative Diffusion Classifier has improved compositional generalisation abilities compared to discriminative models. We assess three models -- Diffusion Classifier, CLIP, and ViLT -- on their ability to bind objects with attributes and relations in both zero-shot learning (ZSL) and generalised zero-shot learning (GZSL) settings. Our results show that the Diffusion Classifier and ViLT perform well at concept binding tasks, but that all models struggle significantly with the relational GZSL task, underscoring the broader challenges VLMs face with relational reasoning. Analysis of CLIP embeddings suggests that the difficulty may stem from overly similar representations of relational concepts such as left and right. Code and dataset are available at: https://github.com/otmive/diffusion_classifier_clip
* 11 pages including references, 6 figures. Accepted at IWCS 2025
Via

Aug 29, 2025
Abstract:Recent studies show the promise of large language models (LLMs) for few-shot tabular classification but highlight challenges due to the variability in structured data. To address this, we propose distilling data into actionable insights to enable robust and effective classification by LLMs. Drawing inspiration from human learning processes, we introduce InsightTab, an insight distillation framework guided by principles of divide-and-conquer, easy-first, and reflective learning. Our approach integrates rule summarization, strategic exemplification, and insight reflection through deep collaboration between LLMs and data modeling techniques. The obtained insights enable LLMs to better align their general knowledge and capabilities with the particular requirements of specific tabular tasks. We extensively evaluate InsightTab on nine datasets. The results demonstrate consistent improvement over state-of-the-art methods. Ablation studies further validate the principle-guided distillation process, while analyses emphasize InsightTab's effectiveness in leveraging labeled data and managing bias.
* EMNLP 25 Findings
Via

Aug 27, 2025
Abstract:With advancements in AI, new gaze estimation methods are exceeding state-of-the-art (SOTA) benchmarks, but their real-world application reveals a gap with commercial eye-tracking solutions. Factors like model size, inference time, and privacy often go unaddressed. Meanwhile, webcam-based eye-tracking methods lack sufficient accuracy, in particular due to head movement. To tackle these issues, we introduce We bEyeTrack, a framework that integrates lightweight SOTA gaze estimation models directly in the browser. It incorporates model-based head pose estimation and on-device few-shot learning with as few as nine calibration samples (k < 9). WebEyeTrack adapts to new users, achieving SOTA performance with an error margin of 2.32 cm on GazeCapture and real-time inference speeds of 2.4 milliseconds on an iPhone 14. Our open-source code is available at https://github.com/RedForestAi/WebEyeTrack.
* 9 pages, 7 figures, 1 table
Via

Aug 27, 2025
Abstract:Network traffic classification using pre-training models has shown promising results, but existing methods struggle to capture packet structural characteristics, flow-level behaviors, hierarchical protocol semantics, and inter-packet contextual relationships. To address these challenges, we propose FlowletFormer, a BERT-based pre-training model specifically designed for network traffic analysis. FlowletFormer introduces a Coherent Behavior-Aware Traffic Representation Model for segmenting traffic into semantically meaningful units, a Protocol Stack Alignment-Based Embedding Layer to capture multilayer protocol semantics, and Field-Specific and Context-Aware Pretraining Tasks to enhance both inter-packet and inter-flow learning. Experimental results demonstrate that FlowletFormer significantly outperforms existing methods in the effectiveness of traffic representation, classification accuracy, and few-shot learning capability. Moreover, by effectively integrating domain-specific network knowledge, FlowletFormer shows better comprehension of the principles of network transmission (e.g., stateful connections of TCP), providing a more robust and trustworthy framework for traffic analysis.
Via

Aug 27, 2025
Abstract:Gas leaks pose serious threats to human health and contribute significantly to atmospheric pollution, drawing increasing public concern. However, the lack of effective detection methods hampers timely and accurate identification of gas leaks. While some vision-based techniques leverage infrared videos for leak detection, the blurry and non-rigid nature of gas clouds often limits their effectiveness. To address these challenges, we propose a novel framework called Joint Vision-Language Gas leak Segmentation (JVLGS), which integrates the complementary strengths of visual and textual modalities to enhance gas leak representation and segmentation. Recognizing that gas leaks are sporadic and many video frames may contain no leak at all, our method incorporates a post-processing step to reduce false positives caused by noise and non-target objects, an issue that affects many existing approaches. Extensive experiments conducted across diverse scenarios show that JVLGS significantly outperforms state-of-the-art gas leak segmentation methods. We evaluate our model under both supervised and few-shot learning settings, and it consistently achieves strong performance in both, whereas competing methods tend to perform well in only one setting or poorly in both. Code available at: https://github.com/GeekEagle/JVLGS
* 19 pages, 13 figures
Via

Aug 29, 2025
Abstract:Natural Language-Guided Drones (NLGD) provide a novel paradigm for tasks such as target matching and navigation. However, the wide field of view and complex compositional semantics in drone scenarios pose challenges for vision-language understanding. Mainstream Vision-Language Models (VLMs) emphasize global alignment while lacking fine-grained semantics, and existing hierarchical methods depend on precise entity partitioning and strict containment, limiting effectiveness in dynamic environments. To address this, we propose the Hierarchical Cross-Granularity Contrastive and Matching learning (HCCM) framework with two components: (1) Region-Global Image-Text Contrastive Learning (RG-ITC), which avoids precise scene partitioning and captures hierarchical local-to-global semantics by contrasting local visual regions with global text and vice versa; (2) Region-Global Image-Text Matching (RG-ITM), which dispenses with rigid constraints and instead evaluates local semantic consistency within global cross-modal representations, enhancing compositional reasoning. Moreover, drone text descriptions are often incomplete or ambiguous, destabilizing alignment. HCCM introduces a Momentum Contrast and Distillation (MCD) mechanism to improve robustness. Experiments on GeoText-1652 show HCCM achieves state-of-the-art Recall@1 of 28.8% (image retrieval) and 14.7% (text retrieval). On the unseen ERA dataset, HCCM demonstrates strong zero-shot generalization with 39.93% mean recall (mR), outperforming fine-tuned baselines.
* Accepted by ACM MM'25
Via

Aug 28, 2025
Abstract:Numerous methods have been proposed to enhance Keyword Spotting (KWS) in adult speech, but children's speech presents unique challenges for KWS systems due to its distinct acoustic and linguistic characteristics. This paper introduces a zero-shot KWS approach that leverages state-of-the-art self-supervised learning (SSL) models, including Wav2Vec2, HuBERT and Data2Vec. Features are extracted layer-wise from these SSL models and used to train a Kaldi-based DNN KWS system. The WSJCAM0 adult speech dataset was used for training, while the PFSTAR children's speech dataset was used for testing, demonstrating the zero-shot capability of our method. Our approach achieved state-of-the-art results across all keyword sets for children's speech. Notably, the Wav2Vec2 model, particularly layer 22, performed the best, delivering an ATWV score of 0.691, a MTWV score of 0.7003 and probability of false alarm and probability of miss of 0.0164 and 0.0547 respectively, for a set of 30 keywords. Furthermore, age-specific performance evaluation confirmed the system's effectiveness across different age groups of children. To assess the system's robustness against noise, additional experiments were conducted using the best-performing layer of the best-performing Wav2Vec2 model. The results demonstrated a significant improvement over traditional MFCC-based baseline, emphasizing the potential of SSL embeddings even in noisy conditions. To further generalize the KWS framework, the experiments were repeated for an additional CMU dataset. Overall the results highlight the significant contribution of SSL features in enhancing Zero-Shot KWS performance for children's speech, effectively addressing the challenges associated with the distinct characteristics of child speakers.
* Pattern Recognition Letters 2025
* Accepted
Via
