Abstract:Artificial intelligence (AI) is reshaping modern healthcare by advancing disease diagnosis, treatment decision-making, and biomedical research. Among AI technologies, large language models (LLMs) have become especially impactful, enabling deep knowledge extraction and semantic reasoning from complex medical texts. However, effective clinical decision support requires knowledge in structured, interoperable formats. Knowledge graphs serve this role by integrating heterogeneous medical information into semantically consistent networks. Yet, current clinical knowledge graphs still depend heavily on manual curation and rule-based extraction, which is limited by the complexity and contextual ambiguity of medical guidelines and literature. To overcome these challenges, we propose an automated framework that combines retrieval-augmented generation (RAG) with LLMs to construct medical indicator knowledge graphs. The framework incorporates guideline-driven data acquisition, ontology-based schema design, and expert-in-the-loop validation to ensure scalability, accuracy, and clinical reliability. The resulting knowledge graphs can be integrated into intelligent diagnosis and question-answering systems, accelerating the development of AI-driven healthcare solutions.
Abstract:Intelligent wearable systems are at the forefront of precision medicine and play a crucial role in enhancing human-machine interaction. Traditional devices often encounter limitations due to their dependence on empirical material design and basic signal processing techniques. To overcome these issues, we introduce the concept of Human-Symbiotic Health Intelligence (HSHI), which is a framework that integrates multi-modal sensor networks with edge-cloud collaborative computing and a hybrid approach to data and knowledge modeling. HSHI is designed to adapt dynamically to both inter-individual and intra-individual variability, transitioning health management from passive monitoring to an active collaborative evolution. The framework incorporates AI-driven optimization of materials and micro-structures, provides robust interpretation of multi-modal signals, and utilizes a dual mechanism that merges population-level insights with personalized adaptations. Moreover, the integration of closed-loop optimization through reinforcement learning and digital twins facilitates customized interventions and feedback. In general, HSHI represents a significant shift in healthcare, moving towards a model that emphasizes prevention, adaptability, and a harmonious relationship between technology and health management.
Abstract:Ancient scripts, e.g., Egyptian hieroglyphs, Oracle Bone Inscriptions, and Ancient Greek inscriptions, serve as vital carriers of human civilization, embedding invaluable historical and cultural information. Automating ancient script image recognition has gained importance, enabling large-scale interpretation and advancing research in archaeology and digital humanities. With the rise of deep learning, this field has progressed rapidly, with numerous script-specific datasets and models proposed. While these scripts vary widely, spanning phonographic systems with limited glyphs to logographic systems with thousands of complex symbols, they share common challenges and methodological overlaps. Moreover, ancient scripts face unique challenges, including imbalanced data distribution and image degradation, which have driven the development of various dedicated methods. This survey provides a comprehensive review of ancient script image recognition methods. We begin by categorizing existing studies based on script types and analyzing respective recognition methods, highlighting both their differences and shared strategies. We then focus on challenges unique to ancient scripts, systematically examining their impact and reviewing recent solutions, including few-shot learning and noise-robust techniques. Finally, we summarize current limitations and outline promising future directions. Our goal is to offer a structured, forward-looking perspective to support ongoing advancements in the recognition, interpretation, and decipherment of ancient scripts.