Face recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
Contemporary knowledge-based systems increasingly rely on multilingual emotion identification to support intelligent decision-making, yet they face major challenges due to emotional ambiguity and incomplete supervision. Emotion recognition from text is inherently uncertain because multiple emotional states often co-occur and emotion annotations are frequently missing or heterogeneous. Most existing multi-label emotion classification methods assume fully observed labels and rely on deterministic learning objectives, which can lead to biased learning and unreliable predictions under partial supervision. This paper introduces Reasoning under Ambiguity, an uncertainty-aware framework for multilingual multi-label emotion classification that explicitly aligns learning with annotation uncertainty. The proposed approach uses a shared multilingual encoder with language-specific optimization and an entropy-based ambiguity weighting mechanism that down-weights highly ambiguous training instances rather than treating missing labels as negative evidence. A mask-aware objective with positive-unlabeled regularization is further incorporated to enable robust learning under partial supervision. Experiments on English, Spanish, and Arabic emotion classification benchmarks demonstrate consistent improvements over strong baselines across multiple evaluation metrics, along with improved training stability, robustness to annotation sparsity, and enhanced interpretability.
With the deep integration of facial recognition into online banking, identity verification, and other networked services, achieving effective decoupling of identity information from visual representations during image storage and transmission has become a critical challenge for privacy protection. To address this issue, we propose SIDeR, a Semantic decoupling-driven framework for unrestricted face privacy protection. SIDeR decomposes a facial image into a machine-recognizable identity feature vector and a visually perceptible semantic appearance component. By leveraging semantic-guided recomposition in the latent space of a diffusion model, it generates visually anonymous adversarial faces while maintaining machine-level identity consistency. The framework incorporates momentum-driven unrestricted perturbation optimization and a semantic-visual balancing factor to synthesize multiple visually diverse, highly natural adversarial samples. Furthermore, for authorized access, the protected image can be restored to its original form when the correct password is provided. Extensive experiments on the CelebA-HQ and FFHQ datasets demonstrate that SIDeR achieves a 99% attack success rate in black-box scenarios and outperforms baseline methods by 41.28% in PSNR-based restoration quality.
Transformation-based privacy-preserving face recognition (PPFR) aims to verify identities while hiding facial data from attackers and malicious service providers. Existing evaluations mostly treat privacy as resistance to pixel-level reconstruction, measured by PSNR and SSIM. We show that this reconstruction-centric view fails. We present FaceLinkGen, an identity extraction attack that performs linkage/matching and face regeneration directly from protected templates without recovering original pixels. On three recent PPFR systems, FaceLinkGen reaches over 98.5\% matching accuracy and above 96\% regeneration success, and still exceeds 92\% matching and 94\% regeneration in a near zero knowledge setting. These results expose a structural gap between pixel distortion metrics, which are widely used in PPFR evaluation, and real privacy. We show that visual obfuscation leaves identity information broadly exposed to both external intruders and untrusted service providers.
This data article presents a dataset of 11,884 labeled images documenting a simulated blood extraction (phlebotomy) procedure performed on a training arm. Images were extracted from high-definition videos recorded under controlled conditions and curated to reduce redundancy using Structural Similarity Index Measure (SSIM) filtering. An automated face-anonymization step was applied to all videos prior to frame selection. Each image contains polygon annotations for five medically relevant classes: syringe, rubber band, disinfectant wipe, gloves, and training arm. The annotations were exported in a segmentation format compatible with modern object detection frameworks (e.g., YOLOv8), ensuring broad usability. This dataset is partitioned into training (70%), validation (15%), and test (15%) subsets and is designed to advance research in medical training automation and human-object interaction. It enables multiple applications, including phlebotomy tool detection, procedural step recognition, workflow analysis, conformance checking, and the development of educational systems that provide structured feedback to medical trainees. The data and accompanying label files are publicly available on Zenodo.
Japanese finance combines agglutinative, head-final linguistic structure, mixed writing systems, and high-context communication norms that rely on indirect expression and implicit commitment, posing a substantial challenge for LLMs. We introduce Ebisu, a benchmark for native Japanese financial language understanding, comprising two linguistically and culturally grounded, expert-annotated tasks: JF-ICR, which evaluates implicit commitment and refusal recognition in investor-facing Q&A, and JF-TE, which assesses hierarchical extraction and ranking of nested financial terminology from professional disclosures. We evaluate a diverse set of open-source and proprietary LLMs spanning general-purpose, Japanese-adapted, and financial models. Results show that even state-of-the-art systems struggle on both tasks. While increased model scale yields limited improvements, language- and domain-specific adaptation does not reliably improve performance, leaving substantial gaps unresolved. Ebisu provides a focused benchmark for advancing linguistically and culturally grounded financial NLP. All datasets and evaluation scripts are publicly released.
Smart-home sensor data holds significant potential for several applications, including healthcare monitoring and assistive technologies. Existing approaches, however, face critical limitations. Supervised models require impractical amounts of labeled data. Foundation models for activity recognition focus only on inertial sensors, failing to address the unique characteristics of smart-home binary sensor events: their sparse, discrete nature combined with rich semantic associations. LLM-based approaches, while tested in this domain, still raise several issues regarding the need for natural language descriptions or prompting, and reliance on either external services or expensive hardware, making them infeasible in real-life scenarios due to privacy and cost concerns. We introduce DomusFM, the first foundation model specifically designed and pretrained for smart-home sensor data. DomusFM employs a self-supervised dual contrastive learning paradigm to capture both token-level semantic attributes and sequence-level temporal dependencies. By integrating semantic embeddings from a lightweight language model and specialized encoders for temporal patterns and binary states, DomusFM learns generalizable representations that transfer across environments and tasks related to activity and event analysis. Through leave-one-dataset-out evaluation across seven public smart-home datasets, we demonstrate that DomusFM outperforms state-of-the-art baselines on different downstream tasks, achieving superior performance even with only 5% of labeled training data available for fine-tuning. Our approach addresses data scarcity while maintaining practical deployability for real-world smart-home systems.
The lack of large-scale, demographically diverse face images with precise Action Unit (AU) occurrence and intensity annotations has long been recognized as a fundamental bottleneck in developing generalizable AU recognition systems. In this paper, we propose MAUGen, a diffusion-based multi-modal framework that jointly generates a large collection of photorealistic facial expressions and anatomically consistent AU labels, including both occurrence and intensity, conditioned on a single descriptive text prompt. Our MAUGen involves two key modules: (1) a Multi-modal Representation Learning (MRL) module that captures the relationships among the paired textual description, facial identity, expression image, and AU activations within a unified latent space; and (2) a Diffusion-based Image label Generator (DIG) that decodes the joint representation into aligned facial image-label pairs across diverse identities. Under this framework, we introduce Multi-Identity Facial Action (MIFA), a large-scale multimodal synthetic dataset featuring comprehensive AU annotations and identity variations. Extensive experiments demonstrate that MAUGen outperforms existing methods in synthesizing photorealistic, demographically diverse facial images along with semantically aligned AU labels.
Face morphing attacks present a significant threat to face recognition systems used in electronic identity enrolment and border control, particularly in single-image morphing attack detection (S-MAD) scenarios where no trusted reference is available. In spite of the vast amount of research on this problem, morph detection systems struggle in cross-dataset scenarios. To address this problem, we introduce a region-aware frequency-based morph detection strategy that drastically improves over strong baseline methods in challenging cross-dataset and cross-morph settings using a lightweight approach. Having observed the separability of bona fide and morph samples in the frequency domain of different facial parts, our approach 1) introduces the concept of residual frequency domain, where the frequency of the signal is decoupled from the natural spectral decay to easily discriminate between morph and bona fide data; 2) additionally, we reason in a global and local manner by combining the evidence from different facial regions in a Markov Random Field, which infers a globally consistent decision. The proposed method, trained exclusively on the synthetic morphing attack detection development dataset (SMDD), is evaluated in challenging cross-dataset and cross-morph settings on FRLL-Morph and MAD22 sets. Our approach achieves an average equal error rate (EER) of 1.85\% on FRLL-Morph and ranks second on MAD22 with an average EER of 6.12\%, while also obtaining a good bona fide presentation classification error rate (BPCER) at a low attack presentation classification error rate (APCER) using only spectral features. These findings indicate that Fourier-domain residual modeling with structured regional fusion offers a competitive alternative to deep S-MAD architectures.
As intelligent sensing expands into high-privacy environments such as restrooms and changing rooms, the field faces a critical privacy-security paradox. Traditional RGB surveillance raises significant concerns regarding visual recording and storage, while existing privacy-preserving methods-ranging from physical desensitization to traditional cryptographic or obfuscation techniques-often compromise semantic understanding capabilities or fail to guarantee mathematical irreversibility against reconstruction attacks. To address these challenges, this study presents a novel privacy-preserving perception technology based on the AI Flow theoretical framework and an edge-cloud collaborative architecture. The proposed methodology integrates source desensitization with irreversible feature mapping. Leveraging Information Bottleneck theory, the edge device performs millisecond-level processing to transform raw imagery into abstract feature vectors via non-linear mapping and stochastic noise injection. This process constructs a unidirectional information flow that strips identity-sensitive attributes, rendering the reconstruction of original images impossible. Subsequently, the cloud platform utilizes multimodal family models to perform joint inference solely on these abstract vectors to detect abnormal behaviors. This approach fundamentally severs the path to privacy leakage at the architectural level, achieving a breakthrough from video surveillance to de-identified behavior perception and offering a robust solution for risk management in high-sensitivity public spaces.