Organizations handling sensitive documents face a tension: cloud-based AI risks GDPR violations, while local systems typically require 18-32 GB RAM. This paper presents CUBO, a systems-oriented RAG platform for consumer laptops with 16 GB shared memory. CUBO's novelty lies in engineering integration of streaming ingestion (O(1) buffer overhead), tiered hybrid retrieval, and hardware-aware orchestration that enables competitive Recall@10 (0.48-0.97 across BEIR domains) within a hard 15.5 GB RAM ceiling. The 37,000-line codebase achieves retrieval latencies of 185 ms (p50) on C1,300 laptops while maintaining data minimization through local-only processing aligned with GDPR Art. 5(1)(c). Evaluation on BEIR benchmarks validates practical deployability for small-to-medium professional archives. The codebase is publicly available at https://github.com/PaoloAstrino/CUBO.
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
Diffusion-based models have demonstrated impressive accuracy and generalization in solving partial differential equations (PDEs). However, they still face significant limitations, such as high sampling costs and insufficient physical consistency, stemming from their many-step iterative sampling mechanism and lack of explicit physics constraints. To address these issues, we propose Phys-Instruct, a novel physics-guided distillation framework which not only (1) compresses a pre-trained diffusion PDE solver into a few-step generator via matching generator and prior diffusion distributions to enable rapid sampling, but also (2) enhances the physics consistency by explicitly injecting PDE knowledge through a PDE distillation guidance. Physic-Instruct is built upon a solid theoretical foundation, leading to a practical physics-constrained training objective that admits tractable gradients. Across five PDE benchmarks, Phys-Instruct achieves orders-of-magnitude faster inference while reducing PDE error by more than 8 times compared to state-of-the-art diffusion baselines. Moreover, the resulting unconditional student model functions as a compact prior, enabling efficient and physically consistent inference for various downstream conditional tasks. Our results indicate that Phys-Instruct is a novel, effective, and efficient framework for ultra-fast PDE solving powered by deep generative models.
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
Low-Rank Adaptation (LoRA) methods have emerged as crucial techniques for adapting large pre-trained models to downstream tasks under computational and memory constraints. However, they face a fundamental challenge in balancing task-specific performance gains against catastrophic forgetting of pre-trained knowledge, where existing methods provide inconsistent recommendations. This paper presents a comprehensive analysis of the performance-forgetting trade-offs inherent in low-rank adaptation using principal components as initialization. Our investigation reveals that fine-tuning intermediate components leads to better balance and show more robustness to high learning rates than first (PiSSA) and last (MiLoRA) components in existing work. Building on these findings, we provide a practical approach for initialization of LoRA that offers superior trade-offs. We demonstrate in a thorough empirical study on a variety of computer vision and NLP tasks that our approach improves accuracy and reduces forgetting, also in continual learning scenarios.
Integrating hard constraints into deep learning is essential for safety-critical systems. Yet existing constructive layers that project predictions onto constraint boundaries face a fundamental bottleneck: gradient saturation. By collapsing exterior points onto lower-dimensional surfaces, standard orthogonal projections induce rank-deficient Jacobians, which nullify gradients orthogonal to active constraints and hinder optimization. We introduce Soft-Radial Projection, a differentiable reparameterization layer that circumvents this issue through a radial mapping from Euclidean space into the interior of the feasible set. This construction guarantees strict feasibility while preserving a full-rank Jacobian almost everywhere, thereby preventing the optimization stalls typical of boundary-based methods. We theoretically prove that the architecture retains the universal approximation property and empirically show improved convergence behavior and solution quality over state-of-the-art optimization- and projection-based baselines.
As large language model agents tackle increasingly complex long-horizon tasks, effective post-training becomes critical. Prior work faces fundamental challenges: outcome-only rewards fail to precisely attribute credit to intermediate steps, estimated step-level rewards introduce systematic noise, and Monte Carlo sampling approaches for step reward estimation incur prohibitive computational cost. Inspired by findings that only a small fraction of high-entropy tokens drive effective RL for reasoning, we propose Critical Step Optimization (CSO), which focuses preference learning on verified critical steps, decision points where alternate actions demonstrably flip task outcomes from failure to success. Crucially, our method starts from failed policy trajectories rather than expert demonstrations, directly targeting the policy model's weaknesses. We use a process reward model (PRM) to identify candidate critical steps, leverage expert models to propose high-quality alternatives, then continue execution from these alternatives using the policy model itself until task completion. Only alternatives that the policy successfully executes to correct outcomes are verified and used as DPO training data, ensuring both quality and policy reachability. This yields fine-grained, verifiable supervision at critical decisions while avoiding trajectory-level coarseness and step-level noise. Experiments on GAIA-Text-103 and XBench-DeepSearch show that CSO achieves 37% and 26% relative improvement over the SFT baseline and substantially outperforms other post-training methods, while requiring supervision at only 16% of trajectory steps. This demonstrates the effectiveness of selective verification-based learning for agent post-training.
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
Camera-based 3D semantic scene completion (SSC) offers a cost-effective solution for assessing the geometric occupancy and semantic labels of each voxel in the surrounding 3D scene with image inputs, providing a voxel-level scene perception foundation for the perception-prediction-planning autonomous driving systems. Although significant progress has been made in existing methods, their optimization rely solely on the supervision from voxel labels and face the challenge of voxel sparsity as a large portion of voxels in autonomous driving scenarios are empty, which limits both optimization efficiency and model performance. To address this issue, we propose a \textit{Multi-Resolution Alignment (MRA)} approach to mitigate voxel sparsity in camera-based 3D semantic scene completion, which exploits the scene and instance level alignment across multi-resolution 3D features as auxiliary supervision. Specifically, we first propose the Multi-resolution View Transformer module, which projects 2D image features into multi-resolution 3D features and aligns them at the scene level through fusing discriminative seed features. Furthermore, we design the Cubic Semantic Anisotropy module to identify the instance-level semantic significance of each voxel, accounting for the semantic differences of a specific voxel against its neighboring voxels within a cubic area. Finally, we devise a Critical Distribution Alignment module, which selects critical voxels as instance-level anchors with the guidance of cubic semantic anisotropy, and applies a circulated loss for auxiliary supervision on the critical feature distribution consistency across different resolutions. The code is available at https://github.com/PKU-ICST-MIPL/MRA_TIP.
Route recommendation systems commonly adopt a multi-stage pipeline involving fine-ranking and re-ranking to produce high-quality ordered recommendations. However, this paradigm faces three critical limitations. First, there is a misalignment between offline training objectives and online metrics. Offline gains do not necessarily translate to online improvements. Actual performance must be validated through A/B testing, which may potentially compromise the user experience. Second, redundancy elimination relies on rigid, handcrafted rules that lack adaptability to the high variance in user intent and the unstructured complexity of real-world scenarios. Third, the strict separation between fine-ranking and re-ranking stages leads to sub-optimal performance. Since each module is optimized in isolation, the fine-ranking stage remains oblivious to the list-level objectives (e.g., diversity) targeted by the re-ranker, thereby preventing the system from achieving a jointly optimized global optimum. To overcome these intertwined challenges, we propose \textbf{SCASRec} (\textbf{S}elf-\textbf{C}orrecting and \textbf{A}uto-\textbf{S}topping \textbf{Rec}ommendation), a unified generative framework that integrates ranking and redundancy elimination into a single end-to-end process. SCASRec introduces a stepwise corrective reward (SCR) to guide list-wise refinement by focusing on hard samples, and employs a learnable End-of-Recommendation (EOR) token to terminate generation adaptively when no further improvement is expected. Experiments on two large-scale, open-sourced route recommendation datasets demonstrate that SCASRec establishes an SOTA in offline and online settings. SCASRec has been fully deployed in a real-world navigation app, demonstrating its effectiveness.