Video generation has achieved remarkable progress, with generated videos increasingly resembling real ones. However, the rapid advance in generation has outpaced the development of adequate evaluation metrics. Currently, the assessment of talking head generation primarily relies on limited metrics, evaluating general video quality, lip synchronization, and on conducting user studies. Motivated by this, we propose a new evaluation framework comprising 8 metrics related to three dimensions (i) quality, (ii) naturalness, and (iii) synchronization. In selecting the metrics, we place emphasis on efficiency, as well as alignment with human preferences. Based on this considerations, we streamline to analyze fine-grained dynamics of head, mouth, and eyebrows, as well as face quality. Our extensive experiments on 85,000 videos generated by 17 state-of-the-art models suggest that while many algorithms excel in lip synchronization, they face challenges with generating expressiveness and artifact-free details. These videos were generated based on a novel real dataset, that we have curated, in order to mitigate bias of training data. Our proposed benchmark framework is aimed at evaluating the improvement of generative methods. Original code, dataset and leaderboards will be publicly released and regularly updated with new methods, in order to reflect progress in the field.
Video quality assessment (VQA) is vital for computer vision tasks, but existing approaches face major limitations: full-reference (FR) metrics require clean reference videos, and most no-reference (NR) models depend on training on costly human opinion labels. Moreover, most opinion-unaware NR methods are image-based, ignoring temporal context critical for video object detection. In this work, we present a scalable, streaming-based VQA model that is both no-reference and opinion-unaware. Our model leverages synthetic degradations of the DAVIS dataset, training a temporal-aware convolutional architecture to predict FR metrics (LPIPS , PSNR, SSIM) directly from degraded video, without references at inference. We show that our streaming approach outperforms our own image-based baseline by generalizing across diverse degradations, underscoring the value of temporal modeling for scalable VQA in real-world vision systems. Additionally, we demonstrate that our model achieves higher correlation with full-reference metrics compared to BRISQUE, a widely-used opinion-aware image quality assessment baseline, validating the effectiveness of our temporal, opinion-unaware approach.
The proliferation of misinformation necessitates robust yet computationally efficient fact verification systems. While current state-of-the-art approaches leverage Large Language Models (LLMs) for generating explanatory rationales, these methods face significant computational barriers and hallucination risks in real-world deployments. We present DeReC (Dense Retrieval Classification), a lightweight framework that demonstrates how general-purpose text embeddings can effectively replace autoregressive LLM-based approaches in fact verification tasks. By combining dense retrieval with specialized classification, our system achieves better accuracy while being significantly more efficient. DeReC outperforms explanation-generating LLMs in efficiency, reducing runtime by 95% on RAWFC (23 minutes 36 seconds compared to 454 minutes 12 seconds) and by 92% on LIAR-RAW (134 minutes 14 seconds compared to 1692 minutes 23 seconds), showcasing its effectiveness across varying dataset sizes. On the RAWFC dataset, DeReC achieves an F1 score of 65.58%, surpassing the state-of-the-art method L-Defense (61.20%). Our results demonstrate that carefully engineered retrieval-based systems can match or exceed LLM performance in specialized tasks while being significantly more practical for real-world deployment.
Small and Medium Enterprises (SMEs), particularly freelancers and early-stage businesses, face unique financial management challenges due to limited resources, small customer bases, and constrained data availability. This paper presents the development and deployment of an integrated financial prediction system that combines accounts receivable prediction and cash flow forecasting specifically designed for SME operational constraints. Our system addresses the gap between enterprise-focused financial tools and the practical needs of freelancers and small businesses. The solution integrates two key components: a binary classification model for predicting invoice payment delays, and a multi-module cash flow forecasting model that handles incomplete and limited historical data. A prototype system has been implemented and deployed as a web application with integration into Cluee's platform, a startup providing financial management tools for freelancers, demonstrating practical feasibility for real-world SME financial management.
High-dimensional reinforcement learning faces challenges with complex calculations and low sample efficiency in large state-action spaces. Q-learning algorithms struggle particularly with the curse of dimensionality, where the number of state-action pairs grows exponentially with problem size. While neural network-based approaches like Deep Q-Networks have shown success, recent tensor-based methods using low-rank decomposition offer more parameter-efficient alternatives. Building upon existing tensor-based methods, we propose Tensor-Efficient Q-Learning (TEQL), which enhances low-rank tensor decomposition via improved block coordinate descent on discretized state-action spaces, incorporating novel exploration and regularization mechanisms. The key innovation is an exploration strategy that combines approximation error with visit count-based upper confidence bound to prioritize actions with high uncertainty, avoiding wasteful random exploration. Additionally, we incorporate a frequency-based penalty term in the objective function to encourage exploration of less-visited state-action pairs and reduce overfitting to frequently visited regions. Empirical results on classic control tasks demonstrate that TEQL outperforms conventional matrix-based methods and deep RL approaches in both sample efficiency and total rewards, making it suitable for resource-constrained applications, such as space and healthcare where sampling costs are high.
Medical question answering systems face deployment challenges including hallucinations, bias, computational demands, privacy concerns, and the need for specialized expertise across diverse domains. Here, we present SOLVE-Med, a multi-agent architecture combining domain-specialized small language models for complex medical queries. The system employs a Router Agent for dynamic specialist selection, ten specialized models (1B parameters each) fine-tuned on specific medical domains, and an Orchestrator Agent that synthesizes responses. Evaluated on Italian medical forum data across ten specialties, SOLVE-Med achieves superior performance with ROUGE-1 of 0.301 and BERTScore F1 of 0.697, outperforming standalone models up to 14B parameters while enabling local deployment. Our code is publicly available on GitHub: https://github.com/PRAISELab-PicusLab/SOLVE-Med.
Robust 3D semantic occupancy is crucial for legged/humanoid robots, yet most semantic scene completion (SSC) systems target wheeled platforms with forward-facing sensors. We present OneOcc, a vision-only panoramic SSC framework designed for gait-introduced body jitter and 360{\deg} continuity. OneOcc combines: (i) Dual-Projection fusion (DP-ER) to exploit the annular panorama and its equirectangular unfolding, preserving 360{\deg} continuity and grid alignment; (ii) Bi-Grid Voxelization (BGV) to reason in Cartesian and cylindrical-polar spaces, reducing discretization bias and sharpening free/occupied boundaries; (iii) a lightweight decoder with Hierarchical AMoE-3D for dynamic multi-scale fusion and better long-range/occlusion reasoning; and (iv) plug-and-play Gait Displacement Compensation (GDC) learning feature-level motion correction without extra sensors. We also release two panoramic occupancy benchmarks: QuadOcc (real quadruped, first-person 360{\deg}) and Human360Occ (H3O) (CARLA human-ego 360{\deg} with RGB, Depth, semantic occupancy; standardized within-/cross-city splits). OneOcc sets new state-of-the-art (SOTA): on QuadOcc it beats strong vision baselines and popular LiDAR ones; on H3O it gains +3.83 mIoU (within-city) and +8.08 (cross-city). Modules are lightweight, enabling deployable full-surround perception for legged/humanoid robots. Datasets and code will be publicly available at https://github.com/MasterHow/OneOcc.
Formulating optimization problems for industrial applications demands significant manual effort and domain expertise. While Large Language Models (LLMs) show promise in automating this process, evaluating their performance remains difficult due to the absence of robust metrics. Existing solver-based approaches often face inconsistency, infeasibility issues, and high computational costs. To address these issues, we propose ORGEval, a graph-theoretic evaluation framework for assessing LLMs' capabilities in formulating linear and mixed-integer linear programs. ORGEval represents optimization models as graphs, reducing equivalence detection to graph isomorphism testing. We identify and prove a sufficient condition, when the tested graphs are symmetric decomposable (SD), under which the Weisfeiler-Lehman (WL) test is guaranteed to correctly detect isomorphism. Building on this, ORGEval integrates a tailored variant of the WL-test with an SD detection algorithm to evaluate model equivalence. By focusing on structural equivalence rather than instance-level configurations, ORGEval is robust to numerical variations. Experimental results show that our method can successfully detect model equivalence and produce 100\% consistent results across random parameter configurations, while significantly outperforming solver-based methods in runtime, especially on difficult problems. Leveraging ORGEval, we construct the Bench4Opt dataset and benchmark state-of-the-art LLMs on optimization modeling. Our results reveal that although optimization modeling remains challenging for all LLMs, DeepSeek-V3 and Claude-Opus-4 achieve the highest accuracies under direct prompting, outperforming even leading reasoning models.
Advances in large language models are making personalized AI agents a new research focus. While current agent systems primarily rely on personalized external memory databases to deliver customized experiences, they face challenges such as memory redundancy, memory staleness, and poor memory-context integration, largely due to the lack of effective memory updates during interaction. To tackle these issues, we propose a new memory management system designed for affective scenarios. Our approach employs a Bayesian-inspired memory update algorithm with the concept of memory entropy, enabling the agent to autonomously maintain a dynamically updated memory vector database by minimizing global entropy to provide more personalized services. To better evaluate the system's effectiveness in this context, we propose DABench, a benchmark focusing on emotional expression and emotional change toward objects. Experimental results demonstrate that, our system achieves superior performance in personalization, logical coherence, and accuracy. Ablation studies further validate the effectiveness of the Bayesian-inspired update mechanism in alleviating memory bloat. Our work offers new insights into the design of long-term memory systems.
Medical images play a crucial role in assisting diagnosis, remote consultation, and academic research. However, during the transmission and sharing process, they face serious risks of copyright ownership and content tampering. Therefore, protecting medical images is of great importance. As an effective means of image copyright protection, zero-watermarking technology focuses on constructing watermarks without modifying the original carrier by extracting its stable features, which provides an ideal approach for protecting medical images. This paper aims to propose a fragile zero-watermarking model based on dual quaternion matrix decomposition, which utilizes the operational relationship between the standard part and the dual part of dual quaternions to correlate the original carrier image with the watermark image, and generates zero-watermarking information based on the characteristics of dual quaternion matrix decomposition, ultimately achieving copyright protection and content tampering detection for medical images.