Abstract:When a student fails an exam, do we tend to blame their effort or the test's difficulty? Attribution, defined as how reasons are assigned to event outcomes, shapes perceptions, reinforces stereotypes, and influences decisions. Attribution Theory in social psychology explains how humans assign responsibility for events using implicit cognition, attributing causes to internal (e.g., effort, ability) or external (e.g., task difficulty, luck) factors. LLMs' attribution of event outcomes based on demographics carries important fairness implications. Most works exploring social biases in LLMs focus on surface-level associations or isolated stereotypes. This work proposes a cognitively grounded bias evaluation framework to identify how models' reasoning disparities channelize biases toward demographic groups.
Abstract:While bias in large language models (LLMs) is well-studied, similar concerns in vision-language models (VLMs) have received comparatively less attention. Existing VLM bias studies often focus on portrait-style images and gender-occupation associations, overlooking broader and more complex social stereotypes and their implied harm. This work introduces VIGNETTE, a large-scale VQA benchmark with 30M+ images for evaluating bias in VLMs through a question-answering framework spanning four directions: factuality, perception, stereotyping, and decision making. Beyond narrowly-centered studies, we assess how VLMs interpret identities in contextualized settings, revealing how models make trait and capability assumptions and exhibit patterns of discrimination. Drawing from social psychology, we examine how VLMs connect visual identity cues to trait and role-based inferences, encoding social hierarchies, through biased selections. Our findings uncover subtle, multifaceted, and surprising stereotypical patterns, offering insights into how VLMs construct social meaning from inputs.
Abstract:Large vision-language models (LVLMs) achieve impressive performance on multimodal tasks but often suffer from hallucination, and confidently describe objects or attributes not present in the image. Current inference-time interventions, while training-free, struggle to maintain accuracy in open-ended and long-form generation scenarios. We introduce the Confidence-Aware Attention Calibration (CAAC) framework to address this challenge by targeting two key biases: spatial perception bias, which distributes attention disproportionately across image tokens, and modality bias, which shifts focus from visual to textual inputs over time. CAAC employs a two-step approach: Visual-Token Calibration (VTC) to balance attention across visual tokens, and Adaptive Attention Re-Scaling (AAR) to reinforce visual grounding based on the model's confidence. This confidence-driven adjustment ensures consistent visual alignment during generation. Experiments on CHAIR, AMBER, and POPE benchmarks demonstrate that CAAC outperforms baselines, particularly in long-form generations, effectively reducing hallucination.
Abstract:Large language models (LLMs) have demonstrated impressive performance on natural language tasks, but their decision-making processes remain largely opaque. Existing explanation methods either suffer from limited faithfulness to the model's reasoning or produce explanations that humans find difficult to understand. To address these challenges, we propose \textbf{ProtoSurE}, a novel prototype-based surrogate framework that provides faithful and human-understandable explanations for LLMs. ProtoSurE trains an interpretable-by-design surrogate model that aligns with the target LLM while utilizing sentence-level prototypes as human-understandable concepts. Extensive experiments show that ProtoSurE consistently outperforms SOTA explanation methods across diverse LLMs and datasets. Importantly, ProtoSurE demonstrates strong data efficiency, requiring relatively few training examples to achieve good performance, making it practical for real-world applications.
Abstract:Evaluations of Large Language Models (LLMs) often overlook intersectional and culturally specific biases, particularly in underrepresented multilingual regions like South Asia. This work addresses these gaps by conducting a multilingual and intersectional analysis of LLM outputs across 10 Indo-Aryan and Dravidian languages, identifying how cultural stigmas influenced by purdah and patriarchy are reinforced in generative tasks. We construct a culturally grounded bias lexicon capturing previously unexplored intersectional dimensions including gender, religion, marital status, and number of children. We use our lexicon to quantify intersectional bias and the effectiveness of self-debiasing in open-ended generations (e.g., storytelling, hobbies, and to-do lists), where bias manifests subtly and remains largely unexamined in multilingual contexts. Finally, we evaluate two self-debiasing strategies (simple and complex prompts) to measure their effectiveness in reducing culturally specific bias in Indo-Aryan and Dravidian languages. Our approach offers a nuanced lens into cultural bias by introducing a novel bias lexicon and evaluation framework that extends beyond Eurocentric or small-scale multilingual settings.
Abstract:Conversational Recommender Systems (CRSs) have become increasingly popular as a powerful tool for providing personalized recommendation experiences. By directly engaging with users in a conversational manner to learn their current and fine-grained preferences, a CRS can quickly derive recommendations that are relevant and justifiable. However, existing conversational recommendation systems (CRSs) typically rely on a centralized training and deployment process, which involves collecting and storing explicitly-communicated user preferences in a centralized repository. These fine-grained user preferences are completely human-interpretable and can easily be used to infer sensitive information (e.g., financial status, political stands, and health information) about the user, if leaked or breached. To address the user privacy concerns in CRS, we first define a set of privacy protection guidelines for preserving user privacy under the conversational recommendation setting. Based on these guidelines, we propose a novel federated conversational recommendation framework that effectively reduces the risk of exposing user privacy by (i) de-centralizing both the historical interests estimation stage and the interactive preference elicitation stage and (ii) strictly bounding privacy leakage by enforcing user-level differential privacy with meticulously selected privacy budgets. Through extensive experiments, we show that the proposed framework not only satisfies these user privacy protection guidelines, but also enables the system to achieve competitive recommendation performance even when compared to the state-of-the-art non-private conversational recommendation approach.
Abstract:The exceptional performance of Large Language Models (LLMs) often comes with the unintended propagation of social biases embedded in their training data. While existing benchmarks evaluate overt bias through direct term associations between bias concept terms and demographic terms, LLMs have become increasingly adept at avoiding biased responses, creating an illusion of neutrality. However, biases persist in subtler, contextually hidden forms that traditional benchmarks fail to capture. We introduce the Hidden Bias Benchmark (HBB), a novel dataset designed to assess hidden bias that bias concepts are hidden within naturalistic, subtly framed contexts in real-world scenarios. We analyze six state-of-the-art LLMs, revealing that while models reduce bias in response to overt bias, they continue to reinforce biases in nuanced settings. Data, code, and results are available at https://github.com/JP-25/Hidden-Bias-Benchmark.
Abstract:This paper delves into the applications of generative artificial intelligence (GAI) in semantic communication (SemCom) and presents a thorough study. Three popular SemCom systems enabled by classical GAI models are first introduced, including variational autoencoders, generative adversarial networks, and diffusion models. For each system, the fundamental concept of the GAI model, the corresponding SemCom architecture, and the associated literature review of recent efforts are elucidated. Then, a novel generative SemCom system is proposed by incorporating the cutting-edge GAI technology-large language models (LLMs). This system features two LLM-based AI agents at both the transmitter and receiver, serving as "brains" to enable powerful information understanding and content regeneration capabilities, respectively. This innovative design allows the receiver to directly generate the desired content, instead of recovering the bit stream, based on the coded semantic information conveyed by the transmitter. Therefore, it shifts the communication mindset from "information recovery" to "information regeneration" and thus ushers in a new era of generative SemCom. A case study on point-to-point video retrieval is presented to demonstrate the superiority of the proposed generative SemCom system, showcasing a 99.98% reduction in communication overhead and a 53% improvement in retrieval accuracy compared to the traditional communication system. Furthermore, four typical application scenarios for generative SemCom are delineated, followed by a discussion of three open issues warranting future investigation. In a nutshell, this paper provides a holistic set of guidelines for applying GAI in SemCom, paving the way for the efficient implementation of generative SemCom in future wireless networks.
Abstract:Cross-domain recommendation (CDR) has emerged as a promising solution to the cold-start problem, faced by single-domain recommender systems. However, existing CDR models rely on complex neural architectures, large datasets, and significant computational resources, making them less effective in data-scarce scenarios or when simplicity is crucial. In this work, we leverage the reasoning capabilities of large language models (LLMs) and explore their performance in the CDR domain across multiple domain pairs. We introduce two novel prompt designs tailored for CDR and demonstrate that LLMs, when prompted effectively, outperform state-of-the-art CDR baselines across various metrics and domain combinations in the rating prediction and ranking tasks. This work bridges the gap between LLMs and recommendation systems, showcasing their potential as effective cross-domain recommenders.
Abstract:Effective labeled data collection plays a critical role in developing and fine-tuning robust streaming analytics systems. However, continuously labeling documents to filter relevant information poses significant challenges like limited labeling budget or lack of high-quality labels. There is a need for efficient human-in-the-loop machine learning (HITL-ML) design to improve streaming analytics systems. One particular HITL- ML approach is online active learning, which involves iteratively selecting a small set of the most informative documents for labeling to enhance the ML model performance. The performance of such algorithms can get affected due to human errors in labeling. To address these challenges, we propose ORIS, a method to perform Online active learning using Reinforcement learning-based Inclusive Sampling of documents for labeling. ORIS aims to create a novel Deep Q-Network-based strategy to sample incoming documents that minimize human errors in labeling and enhance the ML model performance. We evaluate the ORIS method on emotion recognition tasks, and it outperforms traditional baselines in terms of both human labeling performance and the ML model performance.