Abstract:Medical question answering systems face deployment challenges including hallucinations, bias, computational demands, privacy concerns, and the need for specialized expertise across diverse domains. Here, we present SOLVE-Med, a multi-agent architecture combining domain-specialized small language models for complex medical queries. The system employs a Router Agent for dynamic specialist selection, ten specialized models (1B parameters each) fine-tuned on specific medical domains, and an Orchestrator Agent that synthesizes responses. Evaluated on Italian medical forum data across ten specialties, SOLVE-Med achieves superior performance with ROUGE-1 of 0.301 and BERTScore F1 of 0.697, outperforming standalone models up to 14B parameters while enabling local deployment. Our code is publicly available on GitHub: https://github.com/PRAISELab-PicusLab/SOLVE-Med.
Abstract:One-shot FL enables collaborative training in a single round, eliminating the need for iterative communication, making it particularly suitable for use in resource-constrained and privacy-sensitive applications. This survey offers a thorough examination of One-shot FL, highlighting its distinct operational framework compared to traditional federated approaches. One-shot FL supports resource-limited devices by enabling single-round model aggregation while maintaining data locality. The survey systematically categorizes existing methodologies, emphasizing advancements in client model initialization, aggregation techniques, and strategies for managing heterogeneous data distributions. Furthermore, we analyze the limitations of current approaches, particularly in terms of scalability and generalization in non-IID settings. By analyzing cutting-edge techniques and outlining open challenges, this survey aspires to provide a comprehensive reference for researchers and practitioners aiming to design and implement One-shot FL systems, advancing the development and adoption of One-shot FL solutions in a real-world, resource-constrained scenario.