



For safe and flexible navigation in multi-robot systems, this paper presents an enhanced and predictive sampling-based trajectory planning approach in complex environments, the Gradient Field-based Dynamic Window Approach (GF-DWA). Building upon the dynamic window approach, the proposed method utilizes gradient information of obstacle distances as a new cost term to anticipate potential collisions. This enhancement enables the robot to improve awareness of obstacles, including those with non-convex shapes. The gradient field is derived from the Gaussian process distance field, which generates both the distance field and gradient field by leveraging Gaussian process regression to model the spatial structure of the environment. Through several obstacle avoidance and fleet collision avoidance scenarios, the proposed GF-DWA is shown to outperform other popular trajectory planning and control methods in terms of safety and flexibility, especially in complex environments with non-convex obstacles.




This paper introduces the Deep Learning-based Nonlinear Model Predictive Controller with Scene Dynamics (DL-NMPC-SD) method for autonomous navigation. DL-NMPC-SD uses an a-priori nominal vehicle model in combination with a scene dynamics model learned from temporal range sensing information. The scene dynamics model is responsible for estimating the desired vehicle trajectory, as well as to adjust the true system model used by the underlying model predictive controller. We propose to encode the scene dynamics model within the layers of a deep neural network, which acts as a nonlinear approximator for the high order state-space of the operating conditions. The model is learned based on temporal sequences of range sensing observations and system states, both integrated by an Augmented Memory component. We use Inverse Reinforcement Learning and the Bellman optimality principle to train our learning controller with a modified version of the Deep Q-Learning algorithm, enabling us to estimate the desired state trajectory as an optimal action-value function. We have evaluated DL-NMPC-SD against the baseline Dynamic Window Approach (DWA), as well as against two state-of-the-art End2End and reinforcement learning methods, respectively. The performance has been measured in three experiments: i) in our GridSim virtual environment, ii) on indoor and outdoor navigation tasks using our RovisLab AMTU (Autonomous Mobile Test Unit) platform and iii) on a full scale autonomous test vehicle driving on public roads.
Localization and navigation are two crucial issues for mobile robots. In this paper, we propose an approach for localization and navigation systems for a differential-drive robot based on monocular SLAM. The system is implemented on the Robot Operating System (ROS). The hardware includes a differential-drive robot with an embedded computing platform (Jetson Xavier AGX), a 2D camera, and a LiDAR sensor for collecting external environmental information. The A* algorithm and Dynamic Window Approach (DWA) are used for path planning based on a 2D grid map. The ORB_SLAM3 algorithm is utilized to extract environmental features, providing the robot's pose for the localization and navigation processes. Finally, the system is tested in the Gazebo simulation environment and visualized through Rviz, demonstrating the efficiency and potential of the system for indoor localization and navigation of mobile robots.




Localization is one of the most crucial tasks for Unmanned Aerial Vehicle systems (UAVs) directly impacting overall performance, which can be achieved with various sensors and applied to numerous tasks related to search and rescue operations, object tracking, construction, etc. However, due to the negative effects of challenging environments, UAVs may lose signals for localization. In this paper, we present an effective path-planning system leveraging semantic segmentation information to navigate around texture-less and problematic areas like lakes, oceans, and high-rise buildings using a monocular camera. We introduce a real-time semantic segmentation architecture and a novel keyframe decision pipeline to optimize image inputs based on pixel distribution, reducing processing time. A hierarchical planner based on the Dynamic Window Approach (DWA) algorithm, integrated with a cost map, is designed to facilitate efficient path planning. The system is implemented in a photo-realistic simulation environment using Unity, aligning with segmentation model parameters. Comprehensive qualitative and quantitative evaluations validate the effectiveness of our approach, showing significant improvements in the reliability and efficiency of UAV localization in challenging environments.




As terrestrial resources become increasingly depleted, the demand for deep-sea resource exploration has intensified. However, the extreme conditions in the deep-sea environment pose significant challenges for underwater operations, necessitating the development of robust detection robots. In this paper, we propose an advanced path planning methodology that integrates an improved A* algorithm with the Dynamic Window Approach (DWA). By optimizing the search direction of the traditional A* algorithm and introducing an enhanced evaluation function, our improved A* algorithm accelerates path searching and reduces computational load. Additionally, the path-smoothing process has been refined to improve continuity and smoothness, minimizing sharp turns. This method also integrates global path planning with local dynamic obstacle avoidance via DWA, improving the real-time response of underwater robots in dynamic environments. Simulation results demonstrate that our proposed method surpasses the traditional A* algorithm in terms of path smoothness, obstacle avoidance, and real-time performance. The robustness of this approach in complex environments with both static and dynamic obstacles highlights its potential in autonomous underwater vehicle (AUV) navigation and obstacle avoidance.




Mobile robots have shown immense potential and are expected to be widely used in the service industry. The importance of automatic navigation and voice cloning cannot be overstated as they enable functional robots to provide high-quality services. The objective of this work is to develop a control algorithm for the automatic navigation of a humanoid mobile robot called Cruzr, which is a service robot manufactured by Ubtech. Initially, a virtual environment is constructed in the simulation software Gazebo using Simultaneous Localization And Mapping (SLAM), and global path planning is carried out by means of local path tracking. The two-wheel differential chassis kinematics model is employed to ensure autonomous dynamic obstacle avoidance for the robot chassis. Furthermore, the mapping and trajectory generation algorithms developed in the simulation environment are successfully implemented on the real robot Cruzr. The performance of automatic navigation is compared between the Dynamic Window Approach (DWA) and Model Predictive Control (MPC) algorithms. Additionally, a mobile application for voice cloning is created based on a Hidden Markov Model, and the proposed Chatbot is also tested and deployed on Cruzr.




Foundation models (FMs) have shown remarkable advancements in enhancing the performance of intelligent applications. To address the need for data privacy in FM fine-tuning, federated learning has emerged as the de facto framework. Specifically, Federated FMs (FedFMs) fine-tuning using low-rank adaptation (LoRA) modules instead of the full model over multiple clients can achieve both parameter efficiency and data privacy. However, recent studies rarely address the challenges posed by clients with heterogeneous resources, particularly in GPU memory capacity. In this paper, we introduce Fed-piLot, an efficient FedFM fine-tuning framework with optimized local LoRA assignments for heterogeneous clients. By emphasizing the different memory consumption for training different LoRA layers, as well as the varying contributions of different layers to model performance, we formulate the LoRA assignment as a Knapsack Optimization Problem. We design a Local-Global Information Gain Score (IG-Score) based value function to optimize LoRA assignment under clients' memory constraints. To further mitigate the impact of heterogeneity in model updates, we propose a novel Spatial-Temporal model aggregation (STAgg) rule using the Dynamic Weight Adjustment (DWA) strategy. Experimental results on three datasets under both IID and non-IID conditions demonstrate the effectiveness and efficiency of Fed-piLot. The code will be publicly available.




Despite the growing impact of Unmanned Aerial Vehicles (UAVs) across various industries, most of current available solutions lack for a robust autonomous navigation system to deal with the appearance of obstacles safely. This work presents an approach to perform autonomous UAV planning and navigation in scenarios in which a safe and high maneuverability is required, due to the cluttered environment and the narrow rooms to move. The system combines an RRT* global planner with a newly proposed reactive planner, DWA-3D, which is the extension of the well known DWA method for 2D robots. We provide a theoretical-empirical method for adjusting the parameters of the objective function to optimize, easing the classical difficulty for tuning them. An onboard LiDAR provides a 3D point cloud, which is projected on an Octomap in which the planning and navigation decisions are made. There is not a prior map; the system builds and updates the map online, from the current and the past LiDAR information included in the Octomap. Extensive real-world experiments were conducted to validate the system and to obtain a fine tuning of the involved parameters. These experiments allowed us to provide a set of values that ensure safe operation across all the tested scenarios. Just by weighting two parameters, it is possible to prioritize either horizontal path alignment or vertical (height) tracking, resulting in enhancing vertical or lateral avoidance, respectively. Additionally, our DWA-3D proposal is able to navigate successfully even in absence of a global planner or with one that does not consider the drone's size. Finally, the conducted experiments show that computation time with the proposed parameters is not only bounded but also remains stable around 40 ms, regardless of the scenario complexity.

This paper addresses the challenge of collision-free motion planning in automated navigation within complex environments. Utilizing advancements in Deep Reinforcement Learning (DRL) and sensor technologies like LiDAR, we propose the TD3-DWA algorithm, an innovative fusion of the traditional Dynamic Window Approach (DWA) with the Twin Delayed Deep Deterministic Policy Gradient (TD3). This hybrid algorithm enhances the efficiency of robotic path planning by optimizing the sampling interval parameters of DWA to effectively navigate around both static and dynamic obstacles. The performance of the TD3-DWA algorithm is validated through various simulation experiments, demonstrating its potential to significantly improve the reliability and safety of autonomous navigation systems.




In the field of emotion recognition and Human-Machine Interaction (HMI), personalised approaches have exhibited their efficacy in capturing individual-specific characteristics and enhancing affective prediction accuracy. However, personalisation techniques often face the challenge of limited data for target individuals. This paper presents our work on an enhanced personalisation strategy, that leverages data augmentation to develop tailored models for continuous valence and arousal prediction. Our proposed approach, Distance Weighting Augmentation (DWA), employs a weighting-based augmentation method that expands a target individual's dataset, leveraging distance metrics to identify similar samples at the segment-level. Experimental results on the MuSe-Personalisation 2023 Challenge dataset demonstrate that our method significantly improves the performance of features sets which have low baseline performance, on the test set. This improvement in poor-performing features comes without sacrificing performance on high-performing features. In particular, our method achieves a maximum combined testing CCC of 0.78, compared to the reported baseline score of 0.76 (reproduced at 0.72). It also achieved a peak arousal and valence scores of 0.81 and 0.76, compared to reproduced baseline scores of 0.76 and 0.67 respectively. Through this work, we make significant contributions to the advancement of personalised affective computing models, enhancing the practicality and adaptability of data-level personalisation in real world contexts.