Abstract:Evaluating mathematical reasoning in LLMs is constrained by limited benchmark sizes and inherent model stochasticity, yielding high-variance accuracy estimates and unstable rankings across platforms. On difficult problems, an LLM may fail to produce a correct final answer, yet still provide reliable pairwise comparison signals indicating which of two candidate solutions is better. We leverage this observation to design a statistically efficient evaluation framework that combines standard labeled outcomes with pairwise comparison signals obtained by having models judge auxiliary reasoning chains. Treating these comparison signals as control variates, we develop a semiparametric estimator based on the efficient influence function (EIF) for the setting where auxiliary reasoning chains are observed. This yields a one-step estimator that achieves the semiparametric efficiency bound, guarantees strict variance reduction over naive sample averaging, and admits asymptotic normality for principled uncertainty quantification. Across simulations, our one-step estimator substantially improves ranking accuracy, with gains increasing as model output noise grows. Experiments on GPQA Diamond, AIME 2025, and GSM8K further demonstrate more precise performance estimation and more reliable model rankings, especially in small-sample regimes where conventional evaluation is pretty unstable.
Abstract:Standard reward models typically predict scalar scores that fail to capture the multifaceted nature of response quality in non-verifiable domains, such as creative writing or open-ended instruction following. To address this limitation, we propose Rubric-ARM, a framework that jointly optimizes a rubric generator and a judge using reinforcement learning from preference feedback. Unlike existing methods that rely on static rubrics or disjoint training pipelines, our approach treats rubric generation as a latent action learned to maximize judgment accuracy. We introduce an alternating optimization strategy to mitigate the non-stationarity of simultaneous updates, providing theoretical analysis that demonstrates how this schedule reduces gradient variance during training. Extensive experiments show that Rubric-ARM achieves state-of-the-art performance among baselines on multiple benchmarks and significantly improves downstream policy alignment in both offline and online reinforcement learning settings.
Abstract:The increasing reliance on human preference feedback to judge AI-generated pseudo labels has created a pressing need for principled, budget-conscious data acquisition strategies. We address the crucial question of how to optimally allocate a fixed annotation budget between ground-truth labels and pairwise preferences in AI. Our solution, grounded in semi-parametric inference, casts the budget allocation problem as a monotone missing data framework. Building on this formulation, we introduce Preference-Calibrated Active Learning (PCAL), a novel method that learns the optimal data acquisition strategy and develops a statistically efficient estimator for functionals of the data distribution. Theoretically, we prove the asymptotic optimality of our PCAL estimator and establish a key robustness guarantee that ensures robust performance even with poorly estimated nuisance models. Our flexible framework applies to a general class of problems, by directly optimizing the estimator's variance instead of requiring a closed-form solution. This work provides a principled and statistically efficient approach for budget-constrained learning in modern AI. Simulations and real-data analysis demonstrate the practical benefits and superior performance of our proposed method.
Abstract:The rapid evolution of artificial intelligence (AI), specifically large language models (LLMs), has opened opportunities for various educational applications. This paper explored the feasibility of utilizing ChatGPT, one of the most popular LLMs, for automating feedback for Java programming assignments in an introductory computer science (CS1) class. Specifically, this study focused on three questions: 1) To what extent do students view LLM-generated feedback as formative? 2) How do students see the comparative affordances of feedback prompts that include their code, vs. those that exclude it? 3) What enhancements do students suggest for improving AI-generated feedback? To address these questions, we generated automated feedback using the ChatGPT API for four lab assignments in the CS1 class. The survey results revealed that students perceived the feedback as aligning well with formative feedback guidelines established by Shute. Additionally, students showed a clear preference for feedback generated by including the students' code as part of the LLM prompt, and our thematic study indicated that the preference was mainly attributed to the specificity, clarity, and corrective nature of the feedback. Moreover, this study found that students generally expected specific and corrective feedback with sufficient code examples, but had diverged opinions on the tone of the feedback. This study demonstrated that ChatGPT could generate Java programming assignment feedback that students perceived as formative. It also offered insights into the specific improvements that would make the ChatGPT-generated feedback useful for students.
Abstract:Bloodstain pattern analysis plays a crucial role in crime scene investigations by providing valuable information through the study of unique blood patterns. Conventional image analysis methods, like Thresholding and Contrast, impose stringent requirements on the image background and is labor-intensive in the context of droplet image segmentation. The Segment Anything Model (SAM), a recently proposed method for extensive image recognition, is yet to be adequately assessed for its accuracy and efficiency on bloodstain image segmentation. This paper explores the application of pre-trained SAM and fine-tuned SAM on bloodstain image segmentation with diverse image backgrounds. Experiment results indicate that both pre-trained and fine-tuned SAM perform the bloodstain image segmentation task with satisfactory accuracy and efficiency, while fine-tuned SAM achieves an overall 2.2\% accuracy improvement than pre-trained SAM and 4.70\% acceleration in terms of speed for image recognition. Analysis of factors that influence bloodstain recognition is carried out. This research demonstrates the potential application of SAM on bloodstain image segmentation, showcasing the effectiveness of Artificial Intelligence application in criminology research. We release all code and demos at \url{https://github.com/Zdong104/Bloodstain_Analysis_Ai_Tool}