Abstract:Determining the structure of a protein has been a decades-long open question. A protein's three-dimensional structure often poses nontrivial computation costs, when classical simulation algorithms are utilized. Advances in the transformer neural network architecture -- such as AlphaFold2 -- achieve significant improvements for this problem, by learning from a large dataset of sequence information and corresponding protein structures. Yet, such methods only focus on sequence information; other available prior knowledge, such as protein crystallography and partial structure of amino acids, could be potentially utilized. To the best of our knowledge, we propose the first transformer-based model that directly utilizes protein crystallography and partial structure information to predict the electron density maps of proteins. Via two new datasets of peptide fragments (2-residue and 15-residue) , we demonstrate our method, dubbed \texttt{CrysFormer}, can achieve accurate predictions, based on a much smaller dataset size and with reduced computation costs.
Abstract:Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.
Abstract:Advances in Semi-Supervised Learning (SSL) have almost entirely closed the gap between SSL and Supervised Learning at a fraction of the number of labels. However, recent performance improvements have often come \textit{at the cost of significantly increased training computation}. To address this, we propose Curriculum Batch Size (CBS), \textit{an unlabeled batch size curriculum which exploits the natural training dynamics of deep neural networks.} A small unlabeled batch size is used in the beginning of training and is gradually increased to the end of training. A fixed curriculum is used regardless of dataset, model or number of epochs, and reduced training computations is demonstrated on all settings. We apply CBS, strong labeled augmentation, Curriculum Pseudo Labeling (CPL) \citep{FlexMatch} to FixMatch \citep{FixMatch} and term the new SSL algorithm Fast FixMatch. We perform an ablation study to show that strong labeled augmentation and/or CPL do not significantly reduce training computations, but, in synergy with CBS, they achieve optimal performance. Fast FixMatch also achieves substantially higher data utilization compared to previous state-of-the-art. Fast FixMatch achieves between $2.1\times$ - $3.4\times$ reduced training computations on CIFAR-10 with all but 40, 250 and 4000 labels removed, compared to vanilla FixMatch, while attaining the same cited state-of-the-art error rate \citep{FixMatch}. Similar results are achieved for CIFAR-100, SVHN and STL-10. Finally, Fast MixMatch achieves between $2.6\times$ - $3.3\times$ reduced training computations in federated SSL tasks and online/streaming learning SSL tasks, which further demonstrate the generializbility of Fast MixMatch to different scenarios and tasks.
Abstract:One of the goals in Federated Learning (FL) is to create personalized models that can adapt to the context of each participating client, while utilizing knowledge from a shared global model. Yet, often, personalization requires a fine-tuning step using clients' labeled data in order to achieve good performance. This may not be feasible in scenarios where incoming clients are fresh and/or have privacy concerns. It, then, remains open how one can achieve zero-shot personalization in these scenarios. We propose a novel solution by using a Mixture-of-Experts (MoE) framework within a FL setup. Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s). Our gating function harnesses the knowledge of a pretrained model common expert to enhance its routing decisions on-the-fly. As a highlight, our approach can improve accuracy up to 18\% in state of the art FL settings, while maintaining competitive zero-shot performance. In practice, our method can handle non-homogeneous data distributions, scale more efficiently, and improve the state-of-the-art performance on common FL benchmarks.
Abstract:Asynchronous learning protocols have regained attention lately, especially in the Federated Learning (FL) setup, where slower clients can severely impede the learning process. Herein, we propose \texttt{AsyncDrop}, a novel asynchronous FL framework that utilizes dropout regularization to handle device heterogeneity in distributed settings. Overall, \texttt{AsyncDrop} achieves better performance compared to state of the art asynchronous methodologies, while resulting in less communication and training time overheads. The key idea revolves around creating ``submodels'' out of the global model, and distributing their training to workers, based on device heterogeneity. We rigorously justify that such an approach can be theoretically characterized. We implement our approach and compare it against other asynchronous baselines, both by design and by adapting existing synchronous FL algorithms to asynchronous scenarios. Empirically, \texttt{AsyncDrop} reduces the communication cost and training time, while matching or improving the final test accuracy in diverse non-i.i.d. FL scenarios.
Abstract:Recent work on the Lottery Ticket Hypothesis (LTH) shows that there exist ``\textit{winning tickets}'' in large neural networks. These tickets represent ``sparse'' versions of the full model that can be trained independently to achieve comparable accuracy with respect to the full model. However, finding the winning tickets requires one to \emph{pretrain} the large model for at least a number of epochs, which can be a burdensome task, especially when the original neural network gets larger. In this paper, we explore how one can efficiently identify the emergence of such winning tickets, and use this observation to design efficient pretraining algorithms. For clarity of exposition, our focus is on convolutional neural networks (CNNs). To identify good filters, we propose a novel filter distance metric that well-represents the model convergence. As our theory dictates, our filter analysis behaves consistently with recent findings of neural network learning dynamics. Motivated by these observations, we present the \emph{LOttery ticket through Filter-wise Training} algorithm, dubbed as \textsc{LoFT}. \textsc{LoFT} is a model-parallel pretraining algorithm that partitions convolutional layers by filters to train them independently in a distributed setting, resulting in reduced memory and communication costs during pretraining. Experiments show that \textsc{LoFT} $i)$ preserves and finds good lottery tickets, while $ii)$ it achieves non-trivial computation and communication savings, and maintains comparable or even better accuracy than other pretraining methods.
Abstract:Federated learning enables many local devices to train a deep learning model jointly without sharing the local data. Currently, most of federated training schemes learns a global model by averaging the parameters of local models. However, most of these training schemes suffer from high communication cost resulted from transmitting full local model parameters. Moreover, directly averaging model parameters leads to a significant performance degradation, due to the class-imbalanced non-iid data on different devices. Especially for the real life federated learning tasks involving extreme classification, (1) communication becomes the main bottleneck since the model size increases proportionally to the number of output classes; (2) extreme classification (such as user recommendation) normally have extremely imbalanced classes and heterogeneous data on different devices. To overcome this problem, we propose federated multiple label hashing (FedMLH), which leverages label hashing to simultaneously reduce the model size (up to 3.40X decrease) with communication cost (up to 18.75X decrease) and achieves significant better accuracy (up to 35.5%} relative accuracy improvement) and faster convergence rate (up to 5.5X increase) for free on the federated extreme classification tasks compared to federated average algorithm.
Abstract:We propose {\rm \texttt{ResIST}}, a novel distributed training protocol for Residual Networks (ResNets). {\rm \texttt{ResIST}} randomly decomposes a global ResNet into several shallow sub-ResNets that are trained independently in a distributed manner for several local iterations, before having their updates synchronized and aggregated into the global model. In the next round, new sub-ResNets are randomly generated and the process repeats. By construction, per iteration, {\rm \texttt{ResIST}} communicates only a small portion of network parameters to each machine and never uses the full model during training. Thus, {\rm \texttt{ResIST}} reduces the communication, memory, and time requirements of ResNet training to only a fraction of the requirements of previous methods. In comparison to common protocols like data-parallel training and data-parallel training with local SGD, {\rm \texttt{ResIST}} yields a decrease in wall-clock training time, while being competitive with respect to model performance.
Abstract:The graph convolutional network (GCN) is a go-to solution for machine learning on graphs, but its training is notoriously difficult to scale in terms of both the size of the graph and the number of model parameters. These limitations are in stark contrast to the increasing scale (in data size and model size) of experiments in deep learning research. In this work, we propose GIST, a novel distributed approach that enables efficient training of wide (overparameterized) GCNs on large graphs. GIST is a hybrid layer and graph sampling method, which disjointly partitions the global model into several, smaller sub-GCNs that are independently trained across multiple GPUs in parallel. This distributed framework improves model performance and significantly decreases wall-clock training time. GIST seeks to enable large-scale GCN experimentation with the goal of bridging the existing gap in scale between graph machine learning and deep learning.
Abstract:Learning to cooperate is crucially important in multi-agent reinforcement learning. The key is to take the influence of other agents into consideration when performing distributed decision making. However, multi-agent environment is highly dynamic, which makes it hard to learn abstract representations of influences between agents by only low-order features that existing methods exploit. In this paper, we propose a graph convolutional model for multi-agent cooperation. The graph convolution architecture adapts to the dynamics of the underlying graph of the multi-agent environment, where the influence among agents is captured by their abstract relation representations. High-order features extracted by relation kernels of convolutional layers from gradually increased receptive fields are exploited to learn cooperative strategies. The gradient of an agent not only backpropagates to itself but also to other agents in its receptive fields to reinforce the learned cooperative strategies. Moreover, the relation representations are temporally regularized to make the cooperation more consistent. Empirically, we show that our model enables agents to develop more cooperative and sophisticated strategies than existing methods in jungle and battle games and routing in packet switching networks.