Abstract:Instruction-following has emerged as a crucial capability for large language models (LLMs). However, existing approaches often rely on pre-existing documents or external resources to synthesize instruction-following data, which limits their flexibility and generalizability. In this paper, we introduce DecIF, a fully autonomous, meta-decomposition guided framework that generates diverse and high-quality instruction-following data using only LLMs. DecIF is grounded in the principle of decomposition. For instruction generation, we guide LLMs to iteratively produce various types of meta-information, which are then combined with response constraints to form well-structured and semantically rich instructions. We further utilize LLMs to detect and resolve potential inconsistencies within the generated instructions. Regarding response generation, we decompose each instruction into atomic-level evaluation criteria, enabling rigorous validation and the elimination of inaccurate instruction-response pairs. Extensive experiments across a wide range of scenarios and settings demonstrate DecIF's superior performance on instruction-following tasks. Further analysis highlights its strong flexibility, scalability, and generalizability in automatically synthesizing high-quality instruction data.
Abstract:The rapid evolution of the transportation cybersecurity ecosystem, encompassing cybersecurity, automotive, and transportation and logistics sectors, will lead to the formation of distinct spatial clusters and visitor flow patterns across the US. This study examines the spatiotemporal dynamics of visitor flows, analyzing how socioeconomic factors shape industry clustering and workforce distribution within these evolving sectors. To model and predict visitor flow patterns, we develop a BiTransGCN framework, integrating an attention-based Transformer architecture with a Graph Convolutional Network backbone. By integrating AI-enabled forecasting techniques with spatial analysis, this study improves our ability to track, interpret, and anticipate changes in industry clustering and mobility trends, thereby supporting strategic planning for a secure and resilient transportation network. It offers a data-driven foundation for economic planning, workforce development, and targeted investments in the transportation cybersecurity ecosystem.
Abstract:With the widespread adoption and development of mobile devices, vision-based recognition applications have become a hot topic in research. Jade, as an important cultural heritage and artistic item, has significant applications in fields such as jewelry identification and cultural relic preservation. However, existing jade recognition systems still face challenges in mobile implementation, such as limited computing resources, real-time requirements, and accuracy issues. To address these challenges, this paper proposes a jade recognition system based on size model collaboration, aiming to achieve efficient and accurate jade identification using mobile devices such as smartphones.First, we design a size model based on multi-scale image processing, extracting key visual information by analyzing jade's dimensions, shapes, and surface textures. Then, a collaborative multi-model classification framework is built by combining deep learning and traditional computer vision algorithms. This framework can effectively select and adjust models based on different jade characteristics, providing high accuracy results across various environments and devices.Experimental results show that the proposed system can provide high recognition accuracy and fast processing time on mobile devices, while consuming relatively low computational resources. The system not only holds great application potential but also provides new ideas and technical support for the intelligent development of jade identification.
Abstract:As LLM-based agents become increasingly prevalent, backdoors can be implanted into agents through user queries or environment feedback, raising critical concerns regarding safety vulnerabilities. However, backdoor attacks are typically detectable by safety audits that analyze the reasoning process of agents. To this end, we propose a novel backdoor implantation strategy called \textbf{Dynamically Encrypted Multi-Backdoor Implantation Attack}. Specifically, we introduce dynamic encryption, which maps the backdoor into benign content, effectively circumventing safety audits. To enhance stealthiness, we further decompose the backdoor into multiple sub-backdoor fragments. Based on these advancements, backdoors are allowed to bypass safety audits significantly. Additionally, we present AgentBackdoorEval, a dataset designed for the comprehensive evaluation of agent backdoor attacks. Experimental results across multiple datasets demonstrate that our method achieves an attack success rate nearing 100\% while maintaining a detection rate of 0\%, illustrating its effectiveness in evading safety audits. Our findings highlight the limitations of existing safety mechanisms in detecting advanced attacks, underscoring the urgent need for more robust defenses against backdoor threats. Code and data are available at https://github.com/whfeLingYu/DemonAgent.
Abstract:The Attention Restoration Theory (ART) presents a theoretical framework with four essential indicators (being away, extent, fascinating, and compatibility) for comprehending urban and natural restoration quality. However, previous studies relied on non-sequential data and non-spatial dependent methods, which overlooks the impact of spatial structure defined here as the positional relationships between scene entities on restoration quality. The past methods also make it challenging to measure restoration quality on an urban scale. In this work, a spatial-dependent graph neural networks (GNNs) approach is proposed to reveal the relation between spatial structure and restoration quality on an urban scale. Specifically, we constructed two different types of graphs at the street and city levels. The street-level graphs, using sequential street view images (SVIs) of road segments to capture position relationships between entities, were used to represent spatial structure. The city-level graph, modeling the topological relationships of roads as non-Euclidean data structures and embedding urban features (including Perception-features, Spatial-features, and Socioeconomic-features), was used to measure restoration quality. The results demonstrate that: 1) spatial-dependent GNNs model outperforms traditional methods (Acc = 0.735, F1 = 0.732); 2) spatial structure portrayed through sequential SVIs data significantly influences restoration quality; 3) spaces with the same restoration quality exhibited distinct spatial structures patterns. This study clarifies the association between spatial structure and restoration quality, providing a new perspective to improve urban well-being in the future.