Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Hyunin Lee, Yuhao Ding, Jongmin Lee, Ming Jin, Javad Lavaei, Somayeh Sojoudi

We first raise and tackle ``time synchronization'' issue between the agent and the environment in non-stationary reinforcement learning (RL), a crucial factor hindering its real-world applications. In reality, environmental changes occur over wall-clock time ($\mathfrak{t}$) rather than episode progress ($k$), where wall-clock time signifies the actual elapsed time within the fixed duration $\mathfrak{t} \in [0, T]$. In existing works, at episode $k$, the agent rollouts a trajectory and trains a policy before transitioning to episode $k+1$. In the context of the time-desynchronized environment, however, the agent at time $\mathfrak{t}_k$ allocates $\Delta \mathfrak{t}$ for trajectory generation and training, subsequently moves to the next episode at $\mathfrak{t}_{k+1}=\mathfrak{t}_{k}+\Delta \mathfrak{t}$. Despite a fixed total episode ($K$), the agent accumulates different trajectories influenced by the choice of \textit{interaction times} ($\mathfrak{t}_1,\mathfrak{t}_2,...,\mathfrak{t}_K$), significantly impacting the sub-optimality gap of policy. We propose a Proactively Synchronizing Tempo (ProST) framework that computes optimal $\{ \mathfrak{t}_1,\mathfrak{t}_2,...,\mathfrak{t}_K \} (= \{ \mathfrak{t} \}_{1:K})$. Our main contribution is that we show optimal $\{ \mathfrak{t} \}_{1:K}$ trades-off between the policy training time (agent tempo) and how fast the environment changes (environment tempo). Theoretically, this work establishes an optimal $\{ \mathfrak{t} \}_{1:K}$ as a function of the degree of the environment's non-stationarity while also achieving a sublinear dynamic regret. Our experimental evaluation on various high dimensional non-stationary environments shows that the ProST framework achieves a higher online return at optimal $\{ \mathfrak{t} \}_{1:K}$ than the existing methods.

Via

Donghao Ying, Yunkai Zhang, Yuhao Ding, Alec Koppel, Javad Lavaei

We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints. The objective and constraints are described by {\it general utilities}, i.e., nonlinear functions of the long-term state-action occupancy measure, which encompass broader decision-making goals such as risk, exploration, or imitations. The exponential growth of the state-action space size with the number of agents presents challenges for global observability, further exacerbated by the global coupling arising from agents' safety constraints. To tackle this issue, we propose a primal-dual method utilizing shadow reward and $\kappa$-hop neighbor truncation under a form of correlation decay property, where $\kappa$ is the communication radius. In the exact setting, our algorithm converges to a first-order stationary point (FOSP) at the rate of $\mathcal{O}\left(T^{-2/3}\right)$. In the sample-based setting, we demonstrate that, with high probability, our algorithm requires $\widetilde{\mathcal{O}}\left(\epsilon^{-3.5}\right)$ samples to achieve an $\epsilon$-FOSP with an approximation error of $\mathcal{O}(\phi_0^{2\kappa})$, where $\phi_0\in (0,1)$. Finally, we demonstrate the effectiveness of our model through extensive numerical experiments.

Via

Jiajun Zhou, Jiajun Wu, Yizhao Gao, Yuhao Ding, Chaofan Tao, Boyu Li, Fengbin Tu, Kwang-Ting Cheng, Hayden Kwok-Hay So, Ngai Wong

To accelerate the inference of deep neural networks (DNNs), quantization with low-bitwidth numbers is actively researched. A prominent challenge is to quantize the DNN models into low-bitwidth numbers without significant accuracy degradation, especially at very low bitwidths (< 8 bits). This work targets an adaptive data representation with variable-length encoding called DyBit. DyBit can dynamically adjust the precision and range of separate bit-field to be adapted to the DNN weights/activations distribution. We also propose a hardware-aware quantization framework with a mixed-precision accelerator to trade-off the inference accuracy and speedup. Experimental results demonstrate that the inference accuracy via DyBit is 1.997% higher than the state-of-the-art at 4-bit quantization, and the proposed framework can achieve up to 8.1x speedup compared with the original model.

Via

Donghao Ying, Yuhao Ding, Alec Koppel, Javad Lavaei

We study the scalable multi-agent reinforcement learning (MARL) with general utilities, defined as nonlinear functions of the team's long-term state-action occupancy measure. The objective is to find a localized policy that maximizes the average of the team's local utility functions without the full observability of each agent in the team. By exploiting the spatial correlation decay property of the network structure, we propose a scalable distributed policy gradient algorithm with shadow reward and localized policy that consists of three steps: (1) shadow reward estimation, (2) truncated shadow Q-function estimation, and (3) truncated policy gradient estimation and policy update. Our algorithm converges, with high probability, to $\epsilon$-stationarity with $\widetilde{\mc{O}}(\epsilon^{-2})$ samples up to some approximation error that decreases exponentially in the communication radius. This is the first result in the literature on multi-agent RL with general utilities that does not require the full observability.

Via

Yuhao Ding, Ming Jin, Javad Lavaei

We study risk-sensitive reinforcement learning (RL) based on an entropic risk measure in episodic non-stationary Markov decision processes (MDPs). Both the reward functions and the state transition kernels are unknown and allowed to vary arbitrarily over time with a budget on their cumulative variations. When this variation budget is known a prior, we propose two restart-based algorithms, namely Restart-RSMB and Restart-RSQ, and establish their dynamic regrets. Based on these results, we further present a meta-algorithm that does not require any prior knowledge of the variation budget and can adaptively detect the non-stationarity on the exponential value functions. A dynamic regret lower bound is then established for non-stationary risk-sensitive RL to certify the near-optimality of the proposed algorithms. Our results also show that the risk control and the handling of the non-stationarity can be separately designed in the algorithm if the variation budget is known a prior, while the non-stationary detection mechanism in the adaptive algorithm depends on the risk parameter. This work offers the first non-asymptotic theoretical analyses for the non-stationary risk-sensitive RL in the literature.

Via

Donghao Ying, Mengzi Guo, Yuhao Ding, Javad Lavaei, Zuo-Jun, Shen

We study convex Constrained Markov Decision Processes (CMDPs) in which the objective is concave and the constraints are convex in the state-action visitation distribution. We propose a policy-based primal-dual algorithm that updates the primal variable via policy gradient ascent and updates the dual variable via projected sub-gradient descent. Despite the loss of additivity structure and the nonconvex nature, we establish the global convergence of the proposed algorithm by leveraging a hidden convexity in the problem under the general soft-max parameterization, and prove the $\mathcal{O}\left(T^{-1/3}\right)$ convergence rate in terms of both optimality gap and constraint violation. When the objective is strongly concave in the visitation distribution, we prove an improved convergence rate of $\mathcal{O}\left(T^{-1/2}\right)$. By introducing a pessimistic term to the constraint, we further show that a zero constraint violation can be achieved while preserving the same convergence rate for the optimality gap. This work is the first one in the literature that establishes non-asymptotic convergence guarantees for policy-based primal-dual methods for solving infinite-horizon discounted convex CMDPs.

Via

Yuhao Ding, Javad Lavaei

We consider primal-dual-based reinforcement learning (RL) in episodic constrained Markov decision processes (CMDPs) with non-stationary objectives and constraints, which play a central role in ensuring the safety of RL in time-varying environments. In this problem, the reward/utility functions and the state transition functions are both allowed to vary arbitrarily over time as long as their cumulative variations do not exceed certain known variation budgets. Designing safe RL algorithms in time-varying environments is particularly challenging because of the need to integrate the constraint violation reduction, safe exploration, and adaptation to the non-stationarity. To this end, we propose a Periodically Restarted Optimistic Primal-Dual Proximal Policy Optimization (PROPD-PPO) algorithm that features three mechanisms: periodic-restart-based policy improvement, dual update with dual regularization, and periodic-restart-based optimistic policy evaluation. We establish a dynamic regret bound and a constraint violation bound for the proposed algorithm in both the linear kernel CMDP function approximation setting and the tabular CMDP setting. This paper provides the first provably efficient algorithm for non-stationary CMDPs with safe exploration.

Via

Yuhao Ding, Junzi Zhang, Javad Lavaei

Entropy regularization is an efficient technique for encouraging exploration and preventing a premature convergence of (vanilla) policy gradient methods in reinforcement learning (RL). However, the theoretical understanding of entropy regularized RL algorithms has been limited. In this paper, we revisit the classical entropy regularized policy gradient methods with the soft-max policy parametrization, whose convergence has so far only been established assuming access to exact gradient oracles. To go beyond this scenario, we propose the first set of (nearly) unbiased stochastic policy gradient estimators with trajectory-level entropy regularization, with one being an unbiased visitation measure-based estimator and the other one being a nearly unbiased yet more practical trajectory-based estimator. We prove that although the estimators themselves are unbounded in general due to the additional logarithmic policy rewards introduced by the entropy term, the variances are uniformly bounded. This enables the development of the first set of convergence results for stochastic entropy regularized policy gradient methods to both stationary points and globally optimal policies. We also develop some improved sample complexity results under a good initialization.

Via

Yuhao Ding, Junzi Zhang, Javad Lavaei

Policy gradient (PG) methods are popular and efficient for large-scale reinforcement learning due to their relative stability and incremental nature. In recent years, the empirical success of PG methods has led to the development of a theoretical foundation for these methods. In this work, we generalize this line of research by studying the global convergence of stochastic PG methods with momentum terms, which have been demonstrated to be efficient recipes for improving PG methods. We study both the soft-max and the Fisher-non-degenerate policy parametrizations, and show that adding a momentum improves the global optimality sample complexity of vanilla PG methods by $\tilde{\mathcal{O}}(\epsilon^{-1.5})$ and $\tilde{\mathcal{O}}(\epsilon^{-1})$, respectively, where $\epsilon>0$ is the target tolerance. Our work is the first one that obtains global convergence results for the momentum-based PG methods. For the generic Fisher-non-degenerate policy parametrizations, our result is the first single-loop and finite-batch PG algorithm achieving $\tilde{O}(\epsilon^{-3})$ global optimality sample complexity. Finally, as a by-product, our methods also provide general framework for analyzing the global convergence rates of stochastic PG methods, which can be easily applied and extended to different PG estimators.

Via

Donghao Ying, Yuhao Ding, Javad Lavaei

We study entropy-regularized constrained Markov decision processes (CMDPs) under the soft-max parameterization, in which an agent aims to maximize the entropy-regularized value function while satisfying constraints on the expected total utility. By leveraging the entropy regularization, our theoretical analysis shows that its Lagrangian dual function is smooth and the Lagrangian duality gap can be decomposed into the primal optimality gap and the constraint violation. Furthermore, we propose an accelerated dual-descent method for entropy-regularized CMDPs. We prove that our method achieves the global convergence rate $\widetilde{\mathcal{O}}(1/T)$ for both the optimality gap and the constraint violation for entropy-regularized CMDPs. A discussion about a linear convergence rate for CMDPs with a single constraint is also provided.

Via