Abstract:Vision-and-Language Navigation (VLN) tasks require an agent to follow textual instructions to navigate through 3D environments. Traditional approaches use supervised learning methods, relying heavily on domain-specific datasets to train VLN models. Recent methods try to utilize closed-source large language models (LLMs) like GPT-4 to solve VLN tasks in zero-shot manners, but face challenges related to expensive token costs and potential data breaches in real-world applications. In this work, we introduce Open-Nav, a novel study that explores open-source LLMs for zero-shot VLN in the continuous environment. Open-Nav employs a spatial-temporal chain-of-thought (CoT) reasoning approach to break down tasks into instruction comprehension, progress estimation, and decision-making. It enhances scene perceptions with fine-grained object and spatial knowledge to improve LLM's reasoning in navigation. Our extensive experiments in both simulated and real-world environments demonstrate that Open-Nav achieves competitive performance compared to using closed-source LLMs.
Abstract:Endometriosis, affecting about 10\% of individuals assigned female at birth, is challenging to diagnose and manage. Diagnosis typically involves the identification of various signs of the disease using either laparoscopic surgery or the analysis of T1/T2 MRI images, with the latter being quicker and cheaper but less accurate. A key diagnostic sign of endometriosis is the obliteration of the Pouch of Douglas (POD). However, even experienced clinicians struggle with accurately classifying POD obliteration from MRI images, which complicates the training of reliable AI models. In this paper, we introduce the \underline{H}uman-\underline{AI} \underline{Co}llaborative \underline{M}ulti-modal \underline{M}ulti-rater Learning (HAICOMM) methodology to address the challenge above. HAICOMM is the first method that explores three important aspects of this problem: 1) multi-rater learning to extract a cleaner label from the multiple ``noisy'' labels available per training sample; 2) multi-modal learning to leverage the presence of T1/T2 MRI images for training and testing; and 3) human-AI collaboration to build a system that leverages the predictions from clinicians and the AI model to provide more accurate classification than standalone clinicians and AI models. Presenting results on the multi-rater T1/T2 MRI endometriosis dataset that we collected to validate our methodology, the proposed HAICOMM model outperforms an ensemble of clinicians, noisy-label learning models, and multi-rater learning methods.
Abstract:Facial recognition systems are susceptible to both physical and digital attacks, posing significant security risks. Traditional approaches often treat these two attack types separately due to their distinct characteristics. Thus, when being combined attacked, almost all methods could not deal. Some studies attempt to combine the sparse data from both types of attacks into a single dataset and try to find a common feature space, which is often impractical due to the space is difficult to be found or even non-existent. To overcome these challenges, we propose a novel approach that uses the sparse model to handle sparse data, utilizing different parameter groups to process distinct regions of the sparse feature space. Specifically, we employ the Mixture of Experts (MoE) framework in our model, expert parameters are matched to tokens with varying weights during training and adaptively activated during testing. However, the traditional MoE struggles with the complex and irregular classification boundaries of this problem. Thus, we introduce a flexible self-adapting weighting mechanism, enabling the model to better fit and adapt. In this paper, we proposed La-SoftMoE CLIP, which allows for more flexible adaptation to the Unified Attack Detection (UAD) task, significantly enhancing the model's capability to handle diversity attacks. Experiment results demonstrate that our proposed method has SOTA performance.
Abstract:Iris recognition is widely used in high-security scenarios due to its stability and distinctiveness. However, the acquisition of iris images typically requires near-infrared illumination and near-infrared band filters, leading to significant and consistent differences in imaging across devices. This underscores the importance of developing cross-domain capabilities in iris anti-spoofing methods. Despite this need, there is no dataset available that comprehensively evaluates the generalization ability of the iris anti-spoofing task. To address this gap, we propose the IrisGeneral dataset, which includes 10 subsets, belonging to 7 databases, published by 4 institutions, collected with 6 types of devices. IrisGeneral is designed with three protocols, aimed at evaluating average performance, cross-racial generalization, and cross-device generalization of iris anti-spoofing models. To tackle the challenge of integrating multiple sub-datasets in IrisGeneral, we employ multiple parameter sets to learn from the various subsets. Specifically, we utilize the Mixture of Experts (MoE) to fit complex data distributions using multiple sub-neural networks. To further enhance the generalization capabilities, we introduce a novel method Masked-MoE (MMoE). It randomly masks a portion of tokens for some experts and requires their outputs to be similar to the unmasked experts, which improves the generalization ability and effectively mitigates the overfitting issue produced by MoE. We selected ResNet50, VIT-B/16, CLIP, and FLIP as representative models and benchmarked them on the IrisGeneral dataset. Experimental results demonstrate that our proposed MMoE with CLIP achieves the best performance on IrisGeneral.
Abstract:Radio map (RM) is a promising technology that can obtain pathloss based on only location, which is significant for 6G network applications to reduce the communication costs for pathloss estimation. However, the construction of RM in traditional is either computationally intensive or depends on costly sampling-based pathloss measurements. Although the neural network (NN)-based method can efficiently construct the RM without sampling, its performance is still suboptimal. This is primarily due to the misalignment between the generative characteristics of the RM construction problem and the discrimination modeling exploited by existing NN-based methods. Thus, to enhance RM construction performance, in this paper, the sampling-free RM construction is modeled as a conditional generative problem, where a denoised diffusion-based method, named RadioDiff, is proposed to achieve high-quality RM construction. In addition, to enhance the diffusion model's capability of extracting features from dynamic environments, an attention U-Net with an adaptive fast Fourier transform module is employed as the backbone network to improve the dynamic environmental features extracting capability. Meanwhile, the decoupled diffusion model is utilized to further enhance the construction performance of RMs. Moreover, a comprehensive theoretical analysis of why the RM construction is a generative problem is provided for the first time, from both perspectives of data features and NN training methods. Experimental results show that the proposed RadioDiff achieves state-of-the-art performance in all three metrics of accuracy, structural similarity, and peak signal-to-noise ratio. The code is available at https://github.com/UNIC-Lab/RadioDiff.
Abstract:Scene text retrieval aims to find all images containing the query text from an image gallery. Current efforts tend to adopt an Optical Character Recognition (OCR) pipeline, which requires complicated text detection and/or recognition processes, resulting in inefficient and inflexible retrieval. Different from them, in this work we propose to explore the intrinsic potential of Contrastive Language-Image Pre-training (CLIP) for OCR-free scene text retrieval. Through empirical analysis, we observe that the main challenges of CLIP as a text retriever are: 1) limited text perceptual scale, and 2) entangled visual-semantic concepts. To this end, a novel model termed FDP (Focus, Distinguish, and Prompt) is developed. FDP first focuses on scene text via shifting the attention to the text area and probing the hidden text knowledge, and then divides the query text into content word and function word for processing, in which a semantic-aware prompting scheme and a distracted queries assistance module are utilized. Extensive experiments show that FDP significantly enhances the inference speed while achieving better or competitive retrieval accuracy compared to existing methods. Notably, on the IIIT-STR benchmark, FDP surpasses the state-of-the-art model by 4.37% with a 4 times faster speed. Furthermore, additional experiments under phrase-level and attribute-aware scene text retrieval settings validate FDP's particular advantages in handling diverse forms of query text. The source code will be publicly available at https://github.com/Gyann-z/FDP.
Abstract:Recently, text-to-3D generation has attracted significant attention, resulting in notable performance enhancements. Previous methods utilize end-to-end 3D generation models to initialize 3D Gaussians, multi-view diffusion models to enforce multi-view consistency, and text-to-image diffusion models to refine details with score distillation algorithms. However, these methods exhibit two limitations. Firstly, they encounter conflicts in generation directions since different models aim to produce diverse 3D assets. Secondly, the issue of over-saturation in score distillation has not been thoroughly investigated and solved. To address these limitations, we propose PlacidDreamer, a text-to-3D framework that harmonizes initialization, multi-view generation, and text-conditioned generation with a single multi-view diffusion model, while simultaneously employing a novel score distillation algorithm to achieve balanced saturation. To unify the generation direction, we introduce the Latent-Plane module, a training-friendly plug-in extension that enables multi-view diffusion models to provide fast geometry reconstruction for initialization and enhanced multi-view images to personalize the text-to-image diffusion model. To address the over-saturation problem, we propose to view score distillation as a multi-objective optimization problem and introduce the Balanced Score Distillation algorithm, which offers a Pareto Optimal solution that achieves both rich details and balanced saturation. Extensive experiments validate the outstanding capabilities of our PlacidDreamer. The code is available at \url{https://github.com/HansenHuang0823/PlacidDreamer}.
Abstract:Due to the fascinating generative performance of text-to-image diffusion models, growing text-to-3D generation works explore distilling the 2D generative priors into 3D, using the score distillation sampling (SDS) loss, to bypass the data scarcity problem. The existing text-to-3D methods have achieved promising results in realism and 3D consistency, but text-to-4D generation still faces challenges, including lack of realism and insufficient dynamic motions. In this paper, we propose a novel method for text-to-4D generation, which ensures the dynamic amplitude and authenticity through direct supervision provided by a video prior. Specifically, we adopt a text-to-video diffusion model to generate a reference video and divide 4D generation into two stages: static generation and dynamic generation. The static 3D generation is achieved under the guidance of the input text and the first frame of the reference video, while in the dynamic generation stage, we introduce a customized SDS loss to ensure multi-view consistency, a video-based SDS loss to improve temporal consistency, and most importantly, direct priors from the reference video to ensure the quality of geometry and texture. Moreover, we design a prior-switching training strategy to avoid conflicts between different priors and fully leverage the benefits of each prior. In addition, to enrich the generated motion, we further introduce a dynamic modeling representation composed of a deformation network and a topology network, which ensures dynamic continuity while modeling topological changes. Our method not only supports text-to-4D generation but also enables 4D generation from monocular videos. The comparison experiments demonstrate the superiority of our method compared to existing methods.
Abstract:Model predictive control (MPC) has played a more crucial role in various robotic control tasks, but its high computational requirements are concerning, especially for nonlinear dynamical models. This paper presents a $\textbf{la}$tent $\textbf{l}$inear $\textbf{q}$uadratic $\textbf{r}$egulator (LaLQR) that maps the state space into a latent space, on which the dynamical model is linear and the cost function is quadratic, allowing the efficient application of LQR. We jointly learn this alternative system by imitating the original MPC. Experiments show LaLQR's superior efficiency and generalization compared to other baselines.
Abstract:The precise subtype classification of myeloproliferative neoplasms (MPNs) based on multimodal information, which assists clinicians in diagnosis and long-term treatment plans, is of great clinical significance. However, it remains a great challenging task due to the lack of diagnostic representativeness for local patches and the absence of diagnostic-relevant features from a single modality. In this paper, we propose a Dynamic Screening and Clinical-Enhanced Network (DSCENet) for the subtype classification of MPNs on the multimodal fusion of whole slide images (WSIs) and clinical information. (1) A dynamic screening module is proposed to flexibly adapt the feature learning of local patches, reducing the interference of irrelevant features and enhancing their diagnostic representativeness. (2) A clinical-enhanced fusion module is proposed to integrate clinical indicators to explore complementary features across modalities, providing comprehensive diagnostic information. Our approach has been validated on the real clinical data, achieving an increase of 7.91% AUC and 16.89% accuracy compared with the previous state-of-the-art (SOTA) methods. The code is available at https://github.com/yuanzhang7/DSCENet.