Abstract:Simulating Professions (SP) enables Large Language Models (LLMs) to emulate professional roles. However, comprehensive psychological and ethical evaluation in these contexts remains lacking. This paper introduces EMNLP, an Educator-role Moral and Normative LLMs Profiling framework for personality profiling, moral development stage measurement, and ethical risk under soft prompt injection. EMNLP extends existing scales and constructs 88 teacher-specific moral dilemmas, enabling profession-oriented comparison with human teachers. A targeted soft prompt injection set evaluates compliance and vulnerability in teacher SP. Experiments on 12 LLMs show teacher-role LLMs exhibit more idealized and polarized personalities than human teachers, excel in abstract moral reasoning, but struggle with emotionally complex situations. Models with stronger reasoning are more vulnerable to harmful prompt injection, revealing a paradox between capability and safety. The model temperature and other hyperparameters have limited influence except in some risk behaviors. This paper presents the first benchmark to assess ethical and psychological alignment of teacher-role LLMs for educational AI. Resources are available at https://e-m-n-l-p.github.io/.
Abstract:Millimeter-wave (MMW) multiple-input multiple-output synthetic aperture radar (MIMO-SAR) system is a technology that can achieve high resolution, high frame rate, and all-weather imaging and has received extensive attention in the non-destructive testing and internal imaging applications of layered dielectric targets. However, the non-ideal scattering effect caused by dielectric materials can significantly deteriorate the imaging quality when using the existing MIMO-SAR fast algorithms. This paper proposes a rapid, high-quality dielectric target-enhanced imaging algorithm for a new universal non-uniform MIMO-SAR system. The algorithm builds on the existing non-uniform MIMO-SAR dielectric target frequency-domain algorithm (DT-FDA) by constructing a forward sensing operator and incorporating it into the alternating direction method of multipliers (ADMM) framework. This approach avoids large matrix operations while maintaining computational efficiency. By integrating an optimal regularization parameter search, the algorithm enhances the image reconstruction quality of dielectric internal structures or defects. Experimental results show the proposed algorithm outperforms IBP and DT-FDA, achieving better focusing, sidelobe suppression, and 3D imaging accuracy. It yields the lowest image entropy (8.864) and significantly improves efficiency (imaging time: 15.29 s vs. 23295.3 s for IBP).