Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

While Online Gradient Descent and other no-regret learning procedures are known to efficiently converge to coarse correlated equilibrium in games where each agent's utility is concave in their own strategy, this is not the case when the utilities are non-concave, a situation that is common in machine learning applications where the agents' strategies are parameterized by deep neural networks, or the agents' utilities are computed by a neural network, or both. Indeed, non-concave games present a host of game-theoretic and optimization challenges: (i) Nash equilibria may fail to exist; (ii) local Nash equilibria exist but are intractable; and (iii) mixed Nash, correlated, and coarse correlated equilibria have infinite support in general, and are intractable. To sidestep these challenges we propose a new solution concept, termed $(\varepsilon, \Phi(\delta))$-local equilibrium, which generalizes local Nash equilibrium in non-concave games, as well as (coarse) correlated equilibrium in concave games. Importantly, we show that two instantiations of this solution concept capture the convergence guarantees of Online Gradient Descent and no-regret learning, which we show efficiently converge to this type of equilibrium in non-concave games with smooth utilities.

Via

Recently, MBConv blocks, initially designed for efficiency in resource-limited settings and later adapted for cutting-edge image classification performances, have demonstrated significant potential in image classification tasks. Despite their success, their application in semantic segmentation has remained relatively unexplored. This paper introduces a novel adaptation of MBConv blocks specifically tailored for semantic segmentation. Our modification stems from the insight that semantic segmentation requires the extraction of more detailed spatial information than image classification. We argue that to effectively perform multi-scale semantic segmentation, each branch of a U-Net architecture, regardless of its resolution, should possess equivalent segmentation capabilities. By implementing these changes, our approach achieves impressive mean Intersection over Union (IoU) scores of 84.5% and 84.0% on the Cityscapes test and validation datasets, respectively, demonstrating the efficacy of our proposed modifications in enhancing semantic segmentation performance.

Via

We study policy optimization algorithms for computing correlated equilibria in multi-player general-sum Markov Games. Previous results achieve $O(T^{-1/2})$ convergence rate to a correlated equilibrium and an accelerated $O(T^{-3/4})$ convergence rate to the weaker notion of coarse correlated equilibrium. In this paper, we improve both results significantly by providing an uncoupled policy optimization algorithm that attains a near-optimal $\tilde{O}(T^{-1})$ convergence rate for computing a correlated equilibrium. Our algorithm is constructed by combining two main elements (i) smooth value updates and (ii) the optimistic-follow-the-regularized-leader algorithm with the log barrier regularizer.

Via

Yang Cai, Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, Haipeng Luo, Weiqiang Zheng

Algorithms based on regret matching, specifically regret matching$^+$ (RM$^+$), and its variants are the most popular approaches for solving large-scale two-player zero-sum games in practice. Unlike algorithms such as optimistic gradient descent ascent, which have strong last-iterate and ergodic convergence properties for zero-sum games, virtually nothing is known about the last-iterate properties of regret-matching algorithms. Given the importance of last-iterate convergence for numerical optimization reasons and relevance as modeling real-word learning in games, in this paper, we study the last-iterate convergence properties of various popular variants of RM$^+$. First, we show numerically that several practical variants such as simultaneous RM$^+$, alternating RM$^+$, and simultaneous predictive RM$^+$, all lack last-iterate convergence guarantees even on a simple $3\times 3$ game. We then prove that recent variants of these algorithms based on a smoothing technique do enjoy last-iterate convergence: we prove that extragradient RM$^{+}$ and smooth Predictive RM$^+$ enjoy asymptotic last-iterate convergence (without a rate) and $1/\sqrt{t}$ best-iterate convergence. Finally, we introduce restarted variants of these algorithms, and show that they enjoy linear-rate last-iterate convergence.

Via

Yang Cai, Michael I. Jordan, Tianyi Lin, Argyris Oikonomou, Emmanouil-Vasileios Vlatakis-Gkaragkounis

Numerous applications in machine learning and data analytics can be formulated as equilibrium computation over Riemannian manifolds. Despite the extensive investigation of their Euclidean counterparts, the performance of Riemannian gradient-based algorithms remain opaque and poorly understood. We revisit the original scheme of Riemannian gradient descent (RGD) and analyze it under a geodesic monotonicity assumption, which includes the well-studied geodesically convex-concave min-max optimization problem as a special case. Our main contribution is to show that, despite the phenomenon of distance distortion, the RGD scheme, with a step size that is agnostic to the manifold's curvature, achieves a curvature-independent and linear last-iterate convergence rate in the geodesically strongly monotone setting. To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence in the Riemannian setting has not been considered before.

Via

We revisit the problem of learning in two-player zero-sum Markov games, focusing on developing an algorithm that is $uncoupled$, $convergent$, and $rational$, with non-asymptotic convergence rates. We start from the case of stateless matrix game with bandit feedback as a warm-up, showing an $\mathcal{O}(t^{-\frac{1}{8}})$ last-iterate convergence rate. To the best of our knowledge, this is the first result that obtains finite last-iterate convergence rate given access to only bandit feedback. We extend our result to the case of irreducible Markov games, providing a last-iterate convergence rate of $\mathcal{O}(t^{-\frac{1}{9+\varepsilon}})$ for any $\varepsilon>0$. Finally, we study Markov games without any assumptions on the dynamics, and show a $path convergence$ rate, which is a new notion of convergence we defined, of $\mathcal{O}(t^{-\frac{1}{10}})$. Our algorithm removes the synchronization and prior knowledge requirement of [Wei et al., 2021], which pursued the same goals as us for irreducible Markov games. Our algorithm is related to [Chen et al., 2021, Cen et al., 2021] and also builds on the entropy regularization technique. However, we remove their requirement of communications on the entropy values, making our algorithm entirely uncoupled.

Via

We propose a new Markov Decision Process (MDP) model for ad auctions to capture the user response to the quality of ads, with the objective of maximizing the long-term discounted revenue. By incorporating user response, our model takes into consideration all three parties involved in the auction (advertiser, auctioneer, and user). The state of the user is modeled as a user-specific click-through rate (CTR) with the CTR changing in the next round according to the set of ads shown to the user in the current round. We characterize the optimal mechanism for this MDP as a Myerson's auction with a notion of modified virtual value, which relies on the value distribution of the advertiser, the current user state, and the future impact of showing the ad to the user. Moreover, we propose a simple mechanism built upon second price auctions with personalized reserve prices and show it can achieve a constant-factor approximation to the optimal long term discounted revenue.

Via

We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow $\mathcal{O}(\frac{1}{\sqrt{T}})$ last-iterate convergence rate to a Nash equilibrium. While the $\mathcal{O}(\frac{1}{\sqrt{T}})$ rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal $\mathcal{O}(\sqrt{T})$ regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal $\mathcal{O}(\frac{1}{T})$ last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an $\mathcal{O}(\log T)$ individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art $\mathcal{O}(\sqrt{T})$ bound.

Via

We study first-order methods for constrained min-max optimization. Existing methods either requires two gradient calls or two projections in each iteration, which may be costly in applications. In this paper, we first show that the Optimistic Gradient (OG) method, a single-call single-projection algorithm, has $O(\frac{1}{\sqrt{T}})$ convergence rate for inclusion problems with operators that satisfy the weak Minty variation inequality (MVI). Our second result is the first single-call single-projection algorithm -- the Accelerated Reflected Gradient (ARG) method that achieves the optimal $O(\frac{1}{T})$ convergence rate for inclusion problems that satisfy negative comonotonicity. Both the weak MVI and negative comonotonicity are well-studied assumptions and capture a rich set of non-convex non-concave min-max optimization problems. Finally, we show that the Reflected Gradient (RG) method, another single-call single-projection algorithm, has $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate for constrained convex-concave min-max optimization, answering an open problem of [Hsieh et al, 2019].

Via

We study monotone inclusions and monotone variational inequalities, as well as their generalizations to non-monotone settings. We first show that the Extra Anchored Gradient (EAG) algorithm, originally proposed by Yoon and Ryu [2021] for unconstrained convex-concave min-max optimization, can be applied to solve the more general problem of Lipschitz monotone inclusion. More specifically, we prove that the EAG solves Lipschitz monotone inclusion problems with an \emph{accelerated convergence rate} of $O(\frac{1}{T})$, which is \emph{optimal among all first-order methods} [Diakonikolas, 2020, Yoon and Ryu, 2021]. Our second result is a new algorithm, called Extra Anchored Gradient Plus (EAG+), which not only achieves the accelerated $O(\frac{1}{T})$ convergence rate for all monotone inclusion problems, but also exhibits the same accelerated rate for a family of general (non-monotone) inclusion problems that concern negative comonotone operators. As a special case of our second result, EAG+ enjoys the $O(\frac{1}{T})$ convergence rate for solving a non-trivial class of nonconvex-nonconcave min-max optimization problems. Our analyses are based on simple potential function arguments, which might be useful for analysing other accelerated algorithms.

Via