Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:Intelligent reflecting surface (IRS) is an emerging technology to enhance spatial multiplexing in wireless networks. This letter considers the discrete passive beamforming design for IRS in order to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among multiple users in an IRS-assisted downlink network. The main design difficulty lies in the discrete phase-shift constraint. Differing from most existing works, this letter advocates a convex-hull relaxation of the discrete constraints which leads to a continuous reformulated problem equivalent to the original discrete problem. This letter further proposes an efficient alternating projection/proximal gradient descent and ascent algorithm for solving the reformulated problem. Simulation results show that the proposed algorithm outperforms the state-of-the-art methods significantly.

Via

Abstract:Conventional policy for configuring an intelligent reflecting surface (IRS) typically requires channel state information (CSI), thus incurring substantial overhead costs and facing incompatibility with the current network protocols. This paper proposes a blind beamforming strategy in the absence of CSI, aiming to boost the minimum signal-to-noise ratio (SNR) among all the receiver positions, namely the coverage enhancement. Although some existing works already consider the IRS-assisted coverage enhancement without CSI, they assume certain position-channel models through which the channels can be recovered from the geographic locations. In contrast, our approach solely relies on the received signal power data, not assuming any position-channel model. We examine the achievability and converse of the proposed blind beamforming method. If the IRS has $N$ reflective elements and there are $U$ receiver positions, then our method guarantees the minimum SNR of $\Omega(N^2/U)$ -- which is fairly close to the upper bound $O(N+N^2\sqrt{\ln (NU)}/\sqrt[4]{U})$. Aside from the simulation results, we justify the practical use of blind beamforming in a field test at 2.6 GHz. According to the real-world experiment, the proposed blind beamforming method boosts the minimum SNR across seven random positions in a conference room by 18.22 dB, while the position-based method yields a boost of 12.08 dB.

Via

Abstract:This paper discusses how to optimize the phase shifts of intelligent reflecting surface (IRS) to combat channel fading without any channel state information (CSI), namely blind beamforming. Differing from most previous works based on a two-stage paradigm of first estimating channels and then optimizing phase shifts, our approach is completely data-driven, only requiring a dataset of the received signal power at the user terminal. Thus, our method does not incur extra overhead costs for channel estimation, and does not entail collaboration from service provider, either. The main idea is to choose phase shifts at random and use the corresponding conditional sample mean of the received signal power to extract the main features of the wireless environment. This blind beamforming approach guarantees an $N^2$ boost of signal-to-noise ratio (SNR), where $N$ is the number of reflective elements (REs) of IRS, regardless of whether the direct channel is line-of-sight (LoS) or not. Moreover, blind beamforming is extended to a double-IRS system with provable performance. Finally, prototype tests show that the proposed blind beamforming method can be readily incorporated into the existing communication systems in the real world; simulation tests further show that it works for a variety of fading channel models.

Via

Abstract:Conventional beamforming methods for intelligent reflecting surfaces (IRSs) or reconfigurable intelligent surfaces (RISs) typically entail the full channel state information (CSI). However, the computational cost of channel acquisition soars exponentially with the number of IRSs. To bypass this difficulty, we propose a novel strategy called blind beamforming that coordinates multiple IRSs by means of statistics without knowing CSI. Blind beamforming only requires measuring the received signal power at the user terminal for a sequence of randomly generated phase shifts across all IRSs. The main idea is to extract the key statistical quantity for beamforming by exploring only a small portion of the whole solution space of phase shifts. We show that blind beamforming guarantees a signal-to-noise ratio (SNR) boost of Theta(N^{2L}) under certain conditions, where L is the number of IRSs and N is the number of reflecting elements per IRS. The above result significantly improves upon the state of the art in the area of multi-IRS assisted communication. Moreover, blind beamforming is justified via field tests and simulations.

Via