Abstract:Graphs play an important role in representing complex relationships in various domains like social networks, knowledge graphs, and molecular discovery. With the advent of deep learning, Graph Neural Networks (GNNs) have emerged as a cornerstone in Graph Machine Learning (Graph ML), facilitating the representation and processing of graph structures. Recently, LLMs have demonstrated unprecedented capabilities in language tasks and are widely adopted in a variety of applications such as computer vision and recommender systems. This remarkable success has also attracted interest in applying LLMs to the graph domain. Increasing efforts have been made to explore the potential of LLMs in advancing Graph ML's generalization, transferability, and few-shot learning ability. Meanwhile, graphs, especially knowledge graphs, are rich in reliable factual knowledge, which can be utilized to enhance the reasoning capabilities of LLMs and potentially alleviate their limitations such as hallucinations and the lack of explainability. Given the rapid progress of this research direction, a systematic review summarizing the latest advancements for Graph ML in the era of LLMs is necessary to provide an in-depth understanding to researchers and practitioners. Therefore, in this survey, we first review the recent developments in Graph ML. We then explore how LLMs can be utilized to enhance the quality of graph features, alleviate the reliance on labeled data, and address challenges such as graph heterogeneity and out-of-distribution (OOD) generalization. Afterward, we delve into how graphs can enhance LLMs, highlighting their abilities to enhance LLM pre-training and inference. Furthermore, we investigate various applications and discuss the potential future directions in this promising field.
Abstract:In the current landscape, the predominant methods for identifying manufacturing capabilities from manufacturers rely heavily on keyword matching and semantic matching. However, these methods often fall short by either overlooking valuable hidden information or misinterpreting critical data. Consequently, such approaches result in an incomplete identification of manufacturers' capabilities. This underscores the pressing need for data-driven solutions to enhance the accuracy and completeness of manufacturing capability identification. To address the need, this study proposes a Graph Neural Network-based method for manufacturing service capability identification over a knowledge graph. To enhance the identification performance, this work introduces a novel approach that involves aggregating information from the graph nodes' neighborhoods as well as oversampling the graph data, which can be effectively applied across a wide range of practical scenarios. Evaluations conducted on a Manufacturing Service Knowledge Graph and subsequent ablation studies demonstrate the efficacy and robustness of the proposed approach. This study not only contributes a innovative method for inferring manufacturing service capabilities but also significantly augments the quality of Manufacturing Service Knowledge Graphs.
Abstract:In an era of information explosion, recommender systems are vital tools to deliver personalized recommendations for users. The key of recommender systems is to forecast users' future behaviors based on previous user-item interactions. Due to their strong expressive power of capturing high-order connectivities in user-item interaction data, recent years have witnessed a rising interest in leveraging Graph Neural Networks (GNNs) to boost the prediction performance of recommender systems. Nonetheless, classic Matrix Factorization (MF) and Deep Neural Network (DNN) approaches still play an important role in real-world large-scale recommender systems due to their scalability advantages. Despite the existence of GNN-acceleration solutions, it remains an open question whether GNN-based recommender systems can scale as efficiently as classic MF and DNN methods. In this paper, we propose a Linear-Time Graph Neural Network (LTGNN) to scale up GNN-based recommender systems to achieve comparable scalability as classic MF approaches while maintaining GNNs' powerful expressiveness for superior prediction accuracy. Extensive experiments and ablation studies are presented to validate the effectiveness and scalability of the proposed algorithm. Our implementation based on PyTorch is available.
Abstract:Recently, sequential recommendation has been adapted to the LLM paradigm to enjoy the power of LLMs. LLM-based methods usually formulate recommendation information into natural language and the model is trained to predict the next item in an auto-regressive manner. Despite their notable success, the substantial computational overhead of inference poses a significant obstacle to their real-world applicability. In this work, we endeavor to streamline existing LLM-based recommendation models and propose a simple yet highly effective model Lite-LLM4Rec. The primary goal of Lite-LLM4Rec is to achieve efficient inference for the sequential recommendation task. Lite-LLM4Rec circumvents the beam search decoding by using a straight item projection head for ranking scores generation. This design stems from our empirical observation that beam search decoding is ultimately unnecessary for sequential recommendations. Additionally, Lite-LLM4Rec introduces a hierarchical LLM structure tailored to efficiently handle the extensive contextual information associated with items, thereby reducing computational overhead while enjoying the capabilities of LLMs. Experiments on three publicly available datasets corroborate the effectiveness of Lite-LLM4Rec in both performance and inference efficiency (notably 46.8% performance improvement and 97.28% efficiency improvement on ML-1m) over existing LLM-based methods. Our implementations will be open sourced.
Abstract:Learning from Text-Attributed Graphs (TAGs) has attracted significant attention due to its wide range of real-world applications. The rapid evolution of large language models (LLMs) has revolutionized the way we process textual data, which indicates a strong potential to replace shallow text embedding generally used in Graph Neural Networks (GNNs). However, we find that existing LLM approaches that exploit text information in graphs suffer from inferior computation and data efficiency. In this work, we introduce a novel and efficient approach for the end-to-end fine-tuning of Large Language Models (LLMs) on TAGs, named LEADING. The proposed approach maintains computation cost and memory overhead comparable to the graph-less fine-tuning of LLMs. Moreover, it transfers the rick knowledge in LLMs to downstream graph learning tasks effectively with limited labeled data in semi-supervised learning. Its superior computation and data efficiency are demonstrated through comprehensive experiments, offering a promising solution for a wide range of LLMs and graph learning tasks on TAGs.
Abstract:The adversarial robustness of Graph Neural Networks (GNNs) has been questioned due to the false sense of security uncovered by strong adaptive attacks despite the existence of numerous defenses. In this work, we delve into the robustness analysis of representative robust GNNs and provide a unified robust estimation point of view to understand their robustness and limitations. Our novel analysis of estimation bias motivates the design of a robust and unbiased graph signal estimator. We then develop an efficient Quasi-Newton iterative reweighted least squares algorithm to solve the estimation problem, which unfolds as robust unbiased aggregation layers in GNNs with a theoretical convergence guarantee. Our comprehensive experiments confirm the strong robustness of our proposed model, and the ablation study provides a deep understanding of its advantages.
Abstract:Polynomial graph filters have been widely used as guiding principles in the design of Graph Neural Networks (GNNs). Recently, the adaptive learning of the polynomial graph filters has demonstrated promising performance for modeling graph signals on both homophilic and heterophilic graphs, owning to their flexibility and expressiveness. In this work, we conduct a novel preliminary study to explore the potential and limitations of polynomial graph filter learning approaches, revealing a severe overfitting issue. To improve the effectiveness of polynomial graph filters, we propose Auto-Polynomial, a novel and general automated polynomial graph filter learning framework that efficiently learns better filters capable of adapting to various complex graph signals. Comprehensive experiments and ablation studies demonstrate significant and consistent performance improvements on both homophilic and heterophilic graphs across multiple learning settings considering various labeling ratios, which unleashes the potential of polynomial filter learning.
Abstract:The existing research on robust Graph Neural Networks (GNNs) fails to acknowledge the significance of directed graphs in providing rich information about networks' inherent structure. This work presents the first investigation into the robustness of GNNs in the context of directed graphs, aiming to harness the profound trust implications offered by directed graphs to bolster the robustness and resilience of GNNs. Our study reveals that existing directed GNNs are not adversarially robust. In pursuit of our goal, we introduce a new and realistic directed graph attack setting and propose an innovative, universal, and efficient message-passing framework as a plug-in layer to significantly enhance the robustness of GNNs. Combined with existing defense strategies, this framework achieves outstanding clean accuracy and state-of-the-art robust performance, offering superior defense against both transfer and adaptive attacks. The findings in this study reveal a novel and promising direction for this crucial research area. The code will be made publicly available upon the acceptance of this work.
Abstract:Graph Neural Networks (GNNs) have emerged as a powerful tool for semi-supervised node classification tasks. However, recent studies have revealed various biases in GNNs stemming from both node features and graph topology. In this work, we uncover a new bias - label position bias, which indicates that the node closer to the labeled nodes tends to perform better. We introduce a new metric, the Label Proximity Score, to quantify this bias, and find that it is closely related to performance disparities. To address the label position bias, we propose a novel optimization framework for learning a label position unbiased graph structure, which can be applied to existing GNNs. Extensive experiments demonstrate that our proposed method not only outperforms backbone methods but also significantly mitigates the issue of label position bias in GNNs.
Abstract:Recent works have demonstrated the benefits of capturing long-distance dependency in graphs by deeper graph neural networks (GNNs). But deeper GNNs suffer from the long-lasting scalability challenge due to the neighborhood explosion problem in large-scale graphs. In this work, we propose to capture long-distance dependency in graphs by shallower models instead of deeper models, which leads to a much more efficient model, LazyGNN, for graph representation learning. Moreover, we demonstrate that LazyGNN is compatible with existing scalable approaches (such as sampling methods) for further accelerations through the development of mini-batch LazyGNN. Comprehensive experiments demonstrate its superior prediction performance and scalability on large-scale benchmarks. LazyGNN also achieves state-of-art performance on the OGB leaderboard.