Department of Computing, Imperial College London, London UK, SW7 2AZ
Abstract:Traffic accident analysis is pivotal for enhancing public safety and developing road regulations. Traditional approaches, although widely used, are often constrained by manual analysis processes, subjective decisions, uni-modal outputs, as well as privacy issues related to sensitive data. This paper introduces the idea of AccidentGPT, a foundation model of traffic accident analysis, which incorporates multi-modal input data to automatically reconstruct the accident process video with dynamics details, and furthermore provide multi-task analysis with multi-modal outputs. The design of the AccidentGPT is empowered with a multi-modality prompt with feedback for task-oriented adaptability, a hybrid training schema to leverage labelled and unlabelled data, and a edge-cloud split configuration for data privacy. To fully realize the functionalities of this model, we proposes several research opportunities. This paper serves as the stepping stone to fill the gaps in traditional approaches of traffic accident analysis and attract the research community attention for automatic, objective, and privacy-preserving traffic accident analysis.
Abstract:Generalizing Neural Radiance Fields (NeRF) to new scenes is a significant challenge that existing approaches struggle to address without extensive modifications to vanilla NeRF framework. We introduce InsertNeRF, a method for INStilling gEneRalizabiliTy into NeRF. By utilizing multiple plug-and-play HyperNet modules, InsertNeRF dynamically tailors NeRF's weights to specific reference scenes, transforming multi-scale sampling-aware features into scene-specific representations. This novel design allows for more accurate and efficient representations of complex appearances and geometries. Experiments show that this method not only achieves superior generalization performance but also provides a flexible pathway for integration with other NeRF-like systems, even in sparse input settings. Code will be available https://github.com/bbbbby-99/InsertNeRF.
Abstract:No-regret algorithms are popular for learning Nash equilibrium (NE) in two-player zero-sum normal-form games (NFGs) and extensive-form games (EFGs). Many recent works consider the last-iterate convergence no-regret algorithms. Among them, the two most famous algorithms are Optimistic Gradient Descent Ascent (OGDA) and Optimistic Multiplicative Weight Update (OMWU). However, OGDA has high per-iteration complexity. OMWU exhibits a lower per-iteration complexity but poorer empirical performance, and its convergence holds only when NE is unique. Recent works propose a Reward Transformation (RT) framework for MWU, which removes the uniqueness condition and achieves competitive performance with OMWU. Unfortunately, RT-based algorithms perform worse than OGDA under the same number of iterations, and their convergence guarantee is based on the continuous-time feedback assumption, which does not hold in most scenarios. To address these issues, we provide a closer analysis of the RT framework, which holds for both continuous and discrete-time feedback. We demonstrate that the essence of the RT framework is to transform the problem of learning NE in the original game into a series of strongly convex-concave optimization problems (SCCPs). We show that the bottleneck of RT-based algorithms is the speed of solving SCCPs. To improve the their empirical performance, we design a novel transformation method to enable the SCCPs can be solved by Regret Matching+ (RM+), a no-regret algorithm with better empirical performance, resulting in Reward Transformation RM+ (RTRM+). RTRM+ enjoys last-iterate convergence under the discrete-time feedback setting. Using the counterfactual regret decomposition framework, we propose Reward Transformation CFR+ (RTCFR+) to extend RTRM+ to EFGs. Experimental results show that our algorithms significantly outperform existing last-iterate convergence algorithms and RM+ (CFR+).
Abstract:Neural Radiance Fields from Sparse input} (NeRF-S) have shown great potential in synthesizing novel views with a limited number of observed viewpoints. However, due to the inherent limitations of sparse inputs and the gap between non-adjacent views, rendering results often suffer from over-fitting and foggy surfaces, a phenomenon we refer to as "CONFUSION" during volume rendering. In this paper, we analyze the root cause of this confusion and attribute it to two fundamental questions: "WHERE" and "HOW". To this end, we present a novel learning framework, WaH-NeRF, which effectively mitigates confusion by tackling the following challenges: (i)"WHERE" to Sample? in NeRF-S -- we introduce a Deformable Sampling strategy and a Weight-based Mutual Information Loss to address sample-position confusion arising from the limited number of viewpoints; and (ii) "HOW" to Predict? in NeRF-S -- we propose a Semi-Supervised NeRF learning Paradigm based on pose perturbation and a Pixel-Patch Correspondence Loss to alleviate prediction confusion caused by the disparity between training and testing viewpoints. By integrating our proposed modules and loss functions, WaH-NeRF outperforms previous methods under the NeRF-S setting. Code is available https://github.com/bbbbby-99/WaH-NeRF.
Abstract:Air Quality Monitoring and Forecasting has been a popular research topic in recent years. Recently, data-driven approaches for air quality forecasting have garnered significant attention, owing to the availability of well-established data collection facilities in urban areas. Fixed infrastructures, typically deployed by national institutes or tech giants, often fall short in meeting the requirements of diverse personalized scenarios, e.g., forecasting in areas without any existing infrastructure. Consequently, smaller institutes or companies with limited budgets are compelled to seek tailored solutions by introducing more flexible infrastructures for data collection. In this paper, we propose an expandable graph attention network (EGAT) model, which digests data collected from existing and newly-added infrastructures, with different spatial structures. Additionally, our proposal can be embedded into any air quality forecasting models, to apply to the scenarios with evolving spatial structures. The proposal is validated over real air quality data from PurpleAir.
Abstract:In recent years, there has been an explosion of research on the application of deep learning to the prediction of various peptide properties, due to the significant development and market potential of peptides. Molecular dynamics has enabled the efficient collection of large peptide datasets, providing reliable training data for deep learning. However, the lack of systematic analysis of the peptide encoding, which is essential for AI-assisted peptide-related tasks, makes it an urgent problem to be solved for the improvement of prediction accuracy. To address this issue, we first collect a high-quality, colossal simulation dataset of peptide self-assembly containing over 62,000 samples generated by coarse-grained molecular dynamics (CGMD). Then, we systematically investigate the effect of peptide encoding of amino acids into sequences and molecular graphs using state-of-the-art sequential (i.e., RNN, LSTM, and Transformer) and structural deep learning models (i.e., GCN, GAT, and GraphSAGE), on the accuracy of peptide self-assembly prediction, an essential physiochemical process prior to any peptide-related applications. Extensive benchmarking studies have proven Transformer to be the most powerful sequence-encoding-based deep learning model, pushing the limit of peptide self-assembly prediction to decapeptides. In summary, this work provides a comprehensive benchmark analysis of peptide encoding with advanced deep learning models, serving as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
Abstract:Air quality forecasting has garnered significant attention recently, with data-driven models taking center stage due to advancements in machine learning and deep learning models. However, researchers face challenges with complex data acquisition and the lack of open-sourced datasets, hindering efficient model validation. This paper introduces PurpleAirSF, a comprehensive and easily accessible dataset collected from the PurpleAir network. With its high temporal resolution, various air quality measures, and diverse geographical coverage, this dataset serves as a useful tool for researchers aiming to develop novel forecasting models, study air pollution patterns, and investigate their impacts on health and the environment. We present a detailed account of the data collection and processing methods employed to build PurpleAirSF. Furthermore, we conduct preliminary experiments using both classic and modern spatio-temporal forecasting models, thereby establishing a benchmark for future air quality forecasting tasks.
Abstract:Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.
Abstract:Gradient-based meta-learning (GBML) algorithms are able to fast adapt to new tasks by transferring the learned meta-knowledge, while assuming that all tasks come from the same distribution (in-distribution, ID). However, in the real world, they often suffer from an out-of-distribution (OOD) generalization problem, where tasks come from different distributions. OOD exacerbates inconsistencies in magnitudes and directions of task gradients, which brings challenges for GBML to optimize the meta-knowledge by minimizing the sum of task gradients in each minibatch. To address this problem, we propose RotoGBML, a novel approach to homogenize OOD task gradients. RotoGBML uses reweighted vectors to dynamically balance diverse magnitudes to a common scale and uses rotation matrixes to rotate conflicting directions close to each other. To reduce overhead, we homogenize gradients with the features rather than the network parameters. On this basis, to avoid the intervention of non-causal features (e.g., backgrounds), we also propose an invariant self-information (ISI) module to extract invariant causal features (e.g., the outlines of objects). Finally, task gradients are homogenized based on these invariant causal features. Experiments show that RotoGBML outperforms other state-of-the-art methods on various few-shot image classification benchmarks.
Abstract:Visual Simultaneous Localization and Mapping (SLAM) has received significant attention in recent years due to its ability to estimate camera trajectory and create an environment map using visual data alone, making a substantial contribution to autonomous driving applications, in particular, a real-world scenario with moving crowds and vehicles. In this work, we propose a visual SLAM system that incorporates moving object trajectory tracking and prediction. We take into account the motion clues of the pedestrians to track and predict their movement, as long as mapping the environment. Such an integrated system solves the localization of the camera and other moving objects in the scene, and further creates a sparse map to support the potential navigation of the vehicle. In the experiment, we demonstrate the effectiveness and robustness of our approach through a comprehensive evaluation on both our simulation and real-world KITTI datasets.