for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Accurate quantification of tau pathology via tau positron emission tomography (PET) scan is crucial for diagnosing and monitoring Alzheimer's disease (AD). However, the high cost and limited availability of tau PET restrict its widespread use. In contrast, structural magnetic resonance imaging (MRI) and plasma-based biomarkers provide non-invasive and widely available complementary information related to brain anatomy and disease progression. In this work, we propose a text-guided 3D diffusion model for 3D tau PET image synthesis, leveraging multimodal conditions from both structural MRI and plasma measurement. Specifically, the textual prompt is from the plasma p-tau217 measurement, which is a key indicator of AD progression, while MRI provides anatomical structure constraints. The proposed framework is trained and evaluated using clinical AV1451 tau PET data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results demonstrate that our approach can generate realistic, clinically meaningful 3D tau PET across a range of disease stages. The proposed framework can help perform tau PET data augmentation under different settings, provide a non-invasive, cost-effective alternative for visualizing tau pathology, and support the simulation of disease progression under varying plasma biomarker levels and cognitive conditions.
Abstract:Inspired by the recent success of Transformers for Natural Language Processing and vision Transformer for Computer Vision, many researchers in the medical imaging community have flocked to Transformer-based networks for various main stream medical tasks such as classification, segmentation, and estimation. In this study, we analyze, two recently published Transformer-based network architectures for the task of multimodal head-and-tumor segmentation and compare their performance to the de facto standard 3D segmentation network - the nnU-Net. Our results showed that modeling long-range dependencies may be helpful in cases where large structures are present and/or large field of view is needed. However, for small structures such as head-and-neck tumor, the convolution-based U-Net architecture seemed to perform well, especially when training dataset is small and computational resource is limited.