Abstract:Accurate and generalizable blood pressure (BP) estimation is vital for the early detection and management of cardiovascular diseases. In this study, we enforce subject-level data splitting on a public multi-wavelength photoplethysmography (PPG) dataset and propose a generalizable BP estimation framework based on curriculum-adversarial learning. Our approach combines curriculum learning, which transitions from hypertension classification to BP regression, with domain-adversarial training that confuses subject identity to encourage the learning of subject-invariant features. Experiments show that multi-channel fusion consistently outperforms single-channel models. On the four-wavelength PPG dataset, our method achieves strong performance under strict subject-level splitting, with mean absolute errors (MAE) of 14.2mmHg for systolic blood pressure (SBP) and 6.4mmHg for diastolic blood pressure (DBP). Additionally, ablation studies validate the effectiveness of both the curriculum and adversarial components. These results highlight the potential of leveraging complementary information in multi-wavelength PPG and curriculum-adversarial strategies for accurate and robust BP estimation.
Abstract:Blood oxygen saturation (SpO2) is a vital marker for healthcare monitoring. Traditional SpO2 estimation methods often rely on complex clinical calibration, making them unsuitable for low-power, wearable applications. In this paper, we propose a transfer learning-based framework for the rapid adaptation of SpO2 estimation to energy-efficient wearable devices using low-sampling-rate (25Hz) dual-channel photoplethysmography (PPG). We first pretrain a bidirectional Long Short-Term Memory (BiLSTM) model with self-attention on a public clinical dataset, then fine-tune it using data collected from our wearable We-Be band and an FDA-approved reference pulse oximeter. Experimental results show that our approach achieves a mean absolute error (MAE) of 2.967% on the public dataset and 2.624% on the private dataset, significantly outperforming traditional calibration and non-transferred machine learning baselines. Moreover, using 25Hz PPG reduces power consumption by 40% compared to 100Hz, excluding baseline draw. Our method also attains an MAE of 3.284% in instantaneous SpO2 prediction, effectively capturing rapid fluctuations. These results demonstrate the rapid adaptation of accurate, low-power SpO2 monitoring on wearable devices without the need for clinical calibration.
Abstract:Wearable photoplethysmography (PPG) is embedded in billions of devices, yet its optical waveform is easily corrupted by motion, perfusion loss, and ambient light, jeopardizing downstream cardiometric analytics. Existing signal-quality assessment (SQA) methods rely either on brittle heuristics or on data-hungry supervised models. We introduce the first fully unsupervised SQA pipeline for wrist PPG. Stage 1 trains a contrastive 1-D ResNet-18 on 276 h of raw, unlabeled data from heterogeneous sources (varying in device and sampling frequency), yielding optical-emitter- and motion-invariant embeddings (i.e., the learned representation is stable across differences in LED wavelength, drive intensity, and device optics, as well as wrist motion). Stage 2 converts each 512-D encoder embedding into a 4-D topological signature via persistent homology (PH) and clusters these signatures with HDBSCAN. To produce a binary signal-quality index (SQI), the acceptable PPG signals are represented by the densest cluster while the remaining clusters are assumed to mainly contain poor-quality PPG signals. Without re-tuning, the SQI attains Silhouette, Davies-Bouldin, and Calinski-Harabasz scores of 0.72, 0.34, and 6173, respectively, on a stratified sample of 10,000 windows. In this study, we propose a hybrid self-supervised-learning--topological-data-analysis (SSL--TDA) framework that offers a drop-in, scalable, cross-device quality gate for PPG signals.