Abstract:Implicit collaborative filtering recommenders are usually trained to learn user positive preferences. Negative sampling, which selects informative negative items to form negative training data, plays a crucial role in this process. Since items are often clustered in the latent space, existing negative sampling strategies normally oversample negative items from the dense regions. This leads to homogeneous negative data and limited model expressiveness. In this paper, we propose Diverse Negative Sampling (DivNS), a novel approach that explicitly accounts for diversity in negative training data during the negative sampling process. DivNS first finds hard negative items with large preference scores and constructs user-specific caches that store unused but highly informative negative samples. Then, its diversity-augmented sampler selects a diverse subset of negative items from the cache while ensuring dissimilarity from the user's hard negatives. Finally, a synthetic negatives generator combines the selected diverse negatives with hard negatives to form more effective training data. The resulting synthetic negatives are both informative and diverse, enabling recommenders to learn a broader item space and improve their generalisability. Extensive experiments on four public datasets demonstrate the effectiveness of DivNS in improving recommendation quality while maintaining computational efficiency.
Abstract:As deep spatio-temporal neural networks are increasingly utilised in urban computing contexts, the deployment of such methods can have a direct impact on users of critical urban infrastructure, such as public transport, emergency services, and traffic management systems. While many spatio-temporal methods focus on improving accuracy, fairness has recently gained attention due to growing evidence that biased predictions in spatio-temporal applications can disproportionately disadvantage certain demographic or geographic groups, thereby reinforcing existing socioeconomic inequalities and undermining the ethical deployment of AI in public services. In this paper, we propose a novel framework, FairDRL-ST, based on disentangled representation learning, to address fairness concerns in spatio-temporal prediction, with a particular focus on mobility demand forecasting. By leveraging adversarial learning and disentangled representation learning, our framework learns to separate attributes that contain sensitive information. Unlike existing methods that enforce fairness through supervised learning, which may lead to overcompensation and degraded performance, our framework achieves fairness in an unsupervised manner with minimal performance loss. We apply our framework to real-world urban mobility datasets and demonstrate its ability to close fairness gaps while delivering competitive predictive performance compared to state-of-the-art fairness-aware methods.
Abstract:High-dimensional Bayesian Optimization (BO) has attracted significant attention in recent research. However, existing methods have mainly focused on optimizing in continuous domains, while combinatorial (ordinal and categorical) and mixed domains still remain challenging. In this paper, we first propose MOCA-HESP, a novel high-dimensional BO method for combinatorial and mixed variables. The key idea is to leverage the hyper-ellipsoid space partitioning (HESP) technique with different categorical encoders to work with high-dimensional, combinatorial and mixed spaces, while adaptively selecting the optimal encoders for HESP using a multi-armed bandit technique. Our method, MOCA-HESP, is designed as a \textit{meta-algorithm} such that it can incorporate other combinatorial and mixed BO optimizers to further enhance the optimizers' performance. Finally, we develop three practical BO methods by integrating MOCA-HESP with state-of-the-art BO optimizers for combinatorial and mixed variables: standard BO, CASMOPOLITAN, and Bounce. Our experimental results on various synthetic and real-world benchmarks show that our methods outperform existing baselines. Our code implementation can be found at https://github.com/LamNgo1/moca-hesp
Abstract:Traditional offline evaluation methods for recommender systems struggle to capture the complexity of modern platforms due to sparse behavioural signals, noisy data, and limited modelling of user personality traits. While simulation frameworks can generate synthetic data to address these gaps, existing methods fail to replicate behavioural diversity, limiting their effectiveness. To overcome these challenges, we propose the Personality-driven User Behaviour Simulator (PUB), an LLM-based simulation framework that integrates the Big Five personality traits to model personalised user behaviour. PUB dynamically infers user personality from behavioural logs (e.g., ratings, reviews) and item metadata, then generates synthetic interactions that preserve statistical fidelity to real-world data. Experiments on the Amazon review datasets show that logs generated by PUB closely align with real user behaviour and reveal meaningful associations between personality traits and recommendation outcomes. These results highlight the potential of the personality-driven simulator to advance recommender system evaluation, offering scalable, controllable, high-fidelity alternatives to resource-intensive real-world experiments.
Abstract:When it comes to expensive black-box optimization problems, Bayesian Optimization (BO) is a well-known and powerful solution. Many real-world applications involve a large number of dimensions, hence scaling BO to high dimension is of much interest. However, state-of-the-art high-dimensional BO methods still suffer from the curse of dimensionality, highlighting the need for further improvements. In this work, we introduce BOIDS, a novel high-dimensional BO algorithm that guides optimization by a sequence of one-dimensional direction lines using a novel tailored line-based optimization procedure. To improve the efficiency, we also propose an adaptive selection technique to identify most optimal lines for each round of line-based optimization. Additionally, we incorporate a subspace embedding technique for better scaling to high-dimensional spaces. We further provide theoretical analysis of our proposed method to analyze its convergence property. Our extensive experimental results show that BOIDS outperforms state-of-the-art baselines on various synthetic and real-world benchmark problems.
Abstract:Early detection of fuel leakage at service stations with underground petroleum storage systems is a crucial task to prevent catastrophic hazards. Current data-driven fuel leakage detection methods employ offline statistical inventory reconciliation, leading to significant detection delays. Consequently, this can result in substantial financial loss and environmental impact on the surrounding community. In this paper, we propose a novel framework called Memory-based Online Change Point Detection (MOCPD) which operates in near real-time, enabling early detection of fuel leakage. MOCPD maintains a collection of representative historical data within a size-constrained memory, along with an adaptively computed threshold. Leaks are detected when the dissimilarity between the latest data and historical memory exceeds the current threshold. An update phase is incorporated in MOCPD to ensure diversity among historical samples in the memory. With this design, MOCPD is more robust and achieves a better recall rate while maintaining a reasonable precision score. We have conducted a variety of experiments comparing MOCPD to commonly used online change point detection (CPD) baselines on real-world fuel variance data with induced leakages, actual fuel leakage data and benchmark CPD datasets. Overall, MOCPD consistently outperforms the baseline methods in terms of detection accuracy, demonstrating its applicability to fuel leakage detection and CPD problems.
Abstract:Algorithmic recourse provides actions to individuals who have been adversely affected by automated decision-making and helps them achieve a desired outcome. Knowing the recourse, however, does not guarantee that users would implement it perfectly, either due to environmental variability or personal choices. Recourse generation should thus anticipate its sub-optimal or noisy implementation. While several approaches have constructed recourse that accounts for robustness to small perturbation (i.e., noisy recourse implementation), they assume an entire recourse to be implemented in a single step and thus apply one-off uniform noise to it. Such assumption is unrealistic since recourse often includes multiple sequential steps which becomes harder to implement and subject to more noise. In this work, we consider recourse under plausible noise that adapts to the local data geometry and accumulates at every step of the way. We frame this problem as a Markov Decision Process and demonstrate that the distribution of our plausible noise satisfies the Markov property. We then propose the RObust SEquential (ROSE) recourse generator to output a sequence of steps that will lead to the desired outcome even under imperfect implementation. Given our plausible modelling of sub-optimal human actions and greater recourse robustness to accumulated uncertainty, ROSE can grant users higher chances of success under low recourse costs. Empirical evaluation shows our algorithm manages the inherent trade-off between recourse robustness and costs more effectively while ensuring its low sparsity and fast computation.
Abstract:Matching in two-sided markets such as ride-hailing has recently received significant attention. However, existing studies on ride-hailing mainly focus on optimising efficiency, and fairness issues in ride-hailing have been neglected. Fairness issues in ride-hailing, including significant earning differences between drivers and variance of passenger waiting times among different locations, have potential impacts on economic and ethical aspects. The recent studies that focus on fairness in ride-hailing exploit traditional optimisation methods and the Markov Decision Process to balance efficiency and fairness. However, there are several issues in these existing studies, such as myopic short-term decision-making from traditional optimisation and instability of fairness in a comparably longer horizon from both traditional optimisation and Markov Decision Process-based methods. To address these issues, we propose a dynamic Markov Decision Process model to alleviate fairness issues currently faced by ride-hailing, and seek a balance between efficiency and fairness, with two distinct characteristics: (i) a prediction module to predict the number of requests that will be raised in the future from different locations to allow the proposed method to consider long-term fairness based on the whole timeline instead of consider fairness only based on historical and current data patterns; (ii) a customised scalarisation function for multi-objective multi-agent Q Learning that aims to balance efficiency and fairness. Extensive experiments on a publicly available real-world dataset demonstrate that our proposed method outperforms existing state-of-the-art methods.
Abstract:Point-of-interest (POI) recommendation, a form of context-aware recommendation, takes into account spatio-temporal constraints and contexts like distance, peak business hours, and previous user check-ins. Given the ability of these kinds of systems to influence not just the consumer's travel experience, but also the POI's business, it is important to consider fairness from multiple perspectives. Unfortunately, these systems tend to provide less accurate recommendations to inactive users, and less exposure to unpopular POIs. The goal of this paper is to develop a post-filter methodology that incorporates provider and consumer fairness factors into pre-existing recommendation models, to satisfy fairness metrics like item exposure, and performance metrics like precision and distance, making the system more sustainable to both consumers and providers. Experiments have shown that using a linear scoring model for provider fairness in re-scoring recommended items yields the best tradeoff between performance and long-tail exposure, in some cases without a significant decrease in precision. When attempting to address consumer fairness by recommending more popular POIs to inactive users, the result was an increase in precision for only some recommendation models and datasets. Finally, when considering the tradeoff between both parameters, the combinations that reached the Pareto front of consumer and provider fairness, unfortunately, achieved the lowest precision values. We find that the nature of this tradeoff depends heavily on the model and the dataset.
Abstract:Dynamic Vehicle Routing Problem (DVRP), is an extension of the classic Vehicle Routing Problem (VRP), which is a fundamental problem in logistics and transportation. Typically, DVRPs involve two stakeholders: service providers that deliver services to customers and customers who raise requests from different locations. Many real-world applications can be formulated as DVRP such as ridesharing and non-compliance capture. Apart from original objectives like optimising total utility or efficiency, DVRP should also consider fairness for all parties. Unfairness can induce service providers and customers to give up on the systems, leading to negative financial and social impacts. However, most existing DVRP-related applications focus on improving fairness from a single side, and there have been few works considering two-sided fairness and utility optimisation concurrently. To this end, we propose a novel framework, a Two-sided Fairness-aware Genetic Algorithm (named 2FairGA), which expands the genetic algorithm from the original objective solely focusing on utility to multi-objectives that incorporate two-sided fairness. Subsequently, the impact of injecting two fairness definitions into the utility-focused model and the correlation between any pair of the three objectives are explored. Extensive experiments demonstrate the superiority of our proposed framework compared to the state-of-the-art.