Product-related question answering (QA) is an important but challenging task in E-Commerce. It leads to a great demand on automatic review-driven QA, which aims at providing instant responses towards user-posted questions based on diverse product reviews. Nevertheless, the rich information about personal opinions in product reviews, which is essential to answer those product-specific questions, is underutilized in current generation-based review-driven QA studies. There are two main challenges when exploiting the opinion information from the reviews to facilitate the opinion-aware answer generation: (i) jointly modeling opinionated and interrelated information between the question and reviews to capture important information for answer generation, (ii) aggregating diverse opinion information to uncover the common opinion towards the given question. In this paper, we tackle opinion-aware answer generation by jointly learning answer generation and opinion mining tasks with a unified model. Two kinds of opinion fusion strategies, namely, static and dynamic fusion, are proposed to distill and aggregate important opinion information learned from the opinion mining task into the answer generation process. Then a multi-view pointer-generator network is employed to generate opinion-aware answers for a given product-related question. Experimental results show that our method achieves superior performance in real-world E-Commerce QA datasets, and effectively generate opinionated and informative answers.
Automatic generation of high-quality commit messages for code commits can substantially facilitate developers' works and coordination. However, the semantic gap between source code and natural language poses a major challenge for the task. Several studies have been proposed to alleviate the challenge but none explicitly involves code contextual information during commit message generation. Specifically, existing research adopts static embedding for code tokens, which maps a token to the same vector regardless of its context. In this paper, we propose a novel Contextualized code representation learning method for commit message Generation (CoreGen). CoreGen first learns contextualized code representation which exploits the contextual information behind code commit sequences. The learned representations of code commits built upon Transformer are then transferred for downstream commit message generation. Experiments on the benchmark dataset demonstrate the superior effectiveness of our model over the baseline models with an improvement of 28.18% in terms of BLEU-4 score. Furthermore, we also highlight the future opportunities in training contextualized code representations on larger code corpus as a solution to low-resource settings and adapting the pretrained code representations to other downstream code-to-text generation tasks.
We propose a new end-to-end model that treats AMR parsing as a series of dual decisions on the input sequence and the incrementally constructed graph. At each time step, our model performs multiple rounds of attention, reasoning, and composition that aim to answer two critical questions: (1) which part of the input \textit{sequence} to abstract; and (2) where in the output \textit{graph} to construct the new concept. We show that the answers to these two questions are mutually causalities. We design a model based on iterative inference that helps achieve better answers in both perspectives, leading to greatly improved parsing accuracy. Our experimental results significantly outperform all previously reported \textsc{Smatch} scores by large margins. Remarkably, without the help of any large-scale pre-trained language model (e.g., BERT), our model already surpasses previous state-of-the-art using BERT. With the help of BERT, we can push the state-of-the-art results to 80.2\% on LDC2017T10 (AMR 2.0) and 75.4\% on LDC2014T12 (AMR 1.0).
Modeling and prediction of review helpfulness has become more predominant due to proliferation of e-commerce websites and online shops. Since the functionality of a product cannot be tested before buying, people often rely on different kinds of user reviews to decide whether or not to buy a product. However, quality reviews might be buried deep in the heap of a large amount of reviews. Therefore, recommending reviews to customers based on the review quality is of the essence. Since there is no direct indication of review quality, most reviews use the information that ''X out of Y'' users found the review helpful for obtaining the review quality. However, this approach undermines helpfulness prediction because not all reviews have statistically abundant votes. In this paper, we propose a neural deep learning model that predicts the helpfulness score of a review. This model is based on convolutional neural network (CNN) and a context-aware encoding mechanism which can directly capture relationships between words irrespective of their distance in a long sequence. We validated our model on human annotated dataset and the result shows that our model significantly outperforms existing models for helpfulness prediction.
Attention mechanism plays a dominant role in the sequence generation models and has been used to improve the performance of machine translation and abstractive text summarization. Different from neural machine translation, in the task of text summarization, salience estimation for words, phrases or sentences is a critical component, since the output summary is a distillation of the input text. Although the typical attention mechanism can conduct text fragment selection from the input text conditioned on the decoder states, there is still a gap to conduct direct and effective salience detection. To bring back direct salience estimation for summarization with neural networks, we propose a Multi-Attention Learning framework which contains two new attention learning components for salience estimation: supervised attention learning and unsupervised attention learning. We regard the attention weights as the salience information, which means that the semantic units with large attention value will be more important. The context information obtained based on the estimated salience is incorporated with the typical attention mechanism in the decoder to conduct summary generation. Extensive experiments on some benchmark datasets in different languages demonstrate the effectiveness of the proposed framework for the task of abstractive summarization.
Product-specific community question answering platforms can greatly help address the concerns of potential customers. However, the user-provided answers on such platforms often vary a lot in their qualities. Helpfulness votes from the community can indicate the overall quality of the answer, but they are often missing. Accurately predicting the helpfulness of an answer to a given question and thus identifying helpful answers is becoming a demanding need. Since the helpfulness of an answer depends on multiple perspectives instead of only topical relevance investigated in typical QA tasks, common answer selection algorithms are insufficient for tackling this task. In this paper, we propose the Review-guided Answer Helpfulness Prediction (RAHP) model that not only considers the interactions between QA pairs but also investigates the opinion coherence between the answer and crowds' opinions reflected in the reviews, which is another important factor to identify helpful answers. Moreover, we tackle the task of determining opinion coherence as a language inference problem and explore the utilization of pre-training strategy to transfer the textual inference knowledge obtained from a specifically designed trained network. Extensive experiments conducted on real-world data across seven product categories show that our proposed model achieves superior performance on the prediction task.
The dominant graph-to-sequence transduction models employ graph neural networks for graph representation learning, where the structural information is reflected by the receptive field of neurons. Unlike graph neural networks that restrict the information exchange between immediate neighborhood, we propose a new model, known as Graph Transformer, that uses explicit relation encoding and allows direct communication between two distant nodes. It provides a more efficient way for global graph structure modeling. Experiments on the applications of text generation from Abstract Meaning Representation (AMR) and syntax-based neural machine translation show the superiority of our proposed model. Specifically, our model achieves 27.4 BLEU on LDC2015E86 and 29.7 BLEU on LDC2017T10 for AMR-to-text generation, outperforming the state-of-the-art results by up to 2.2 points. On the syntax-based translation tasks, our model establishes new single-model state-of-the-art BLEU scores, 21.3 for English-to-German and 14.1 for English-to-Czech, improving over the existing best results, including ensembles, by over 1 BLEU.
Despite the effectiveness of sequence-to-sequence framework on the task of Short-Text Conversation (STC), the issue of under-exploitation of training data (i.e., the supervision signals from query text is \textit{ignored}) still remains unresolved. Also, the adopted \textit{maximization}-based decoding strategies, inclined to generating the generic responses or responses with repetition, are unsuited to the STC task. In this paper, we propose to formulate the STC task as a language modeling problem and tailor-make a training strategy to adapt a language model for response generation. To enhance generation performance, we design a relevance-promoting transformer language model, which performs additional supervised source attention after the self-attention to increase the importance of informative query tokens in calculating the token-level representation. The model further refines the query representation with relevance clues inferred from its multiple references during training. In testing, we adopt a \textit{randomization-over-maximization} strategy to reduce the generation of generic responses. Experimental results on a large Chinese STC dataset demonstrate the superiority of the proposed model on relevance metrics and diversity metrics.\footnote{Code available at https://ai.tencent.com/ailab/nlp/dialogue/.
Community question answering (CQA) gains increasing popularity in both academy and industry recently. However, the redundancy and lengthiness issues of crowdsourced answers limit the performance of answer selection and lead to reading difficulties and misunderstandings for community users. To solve these problems, we tackle the tasks of answer selection and answer summary generation in CQA with a novel joint learning model. Specifically, we design a question-driven pointer-generator network, which exploits the correlation information between question-answer pairs to aid in attending the essential information when generating answer summaries. Meanwhile, we leverage the answer summaries to alleviate noise in original lengthy answers when ranking the relevancy degrees of question-answer pairs. In addition, we construct a new large-scale CQA corpus, WikiHowQA, which contains long answers for answer selection as well as reference summaries for answer summarization. The experimental results show that the joint learning method can effectively address the answer redundancy issue in CQA and achieves state-of-the-art results on both answer selection and text summarization tasks. Furthermore, the proposed model is shown to be of great transferring ability and applicability for resource-poor CQA tasks, which lack of reference answer summaries.