Abstract:Text-to-speech (TTS) and voice conversion (VC) are two different tasks both aiming at generating high quality speaking voice according to different input modality. Due to their similarity, this paper proposes UnifySpeech, which brings TTS and VC into a unified framework for the first time. The model is based on the assumption that speech can be decoupled into three independent components: content information, speaker information, prosody information. Both TTS and VC can be regarded as mining these three parts of information from the input and completing the reconstruction of speech. For TTS, the speech content information is derived from the text, while in VC it's derived from the source speech, so all the remaining units are shared except for the speech content extraction module in the two tasks. We applied vector quantization and domain constrain to bridge the gap between the content domains of TTS and VC. Objective and subjective evaluation shows that by combining the two task, TTS obtains better speaker modeling ability while VC gets hold of impressive speech content decoupling capability.
Abstract:Open vocabulary object detection has been greatly advanced by the recent development of vision-language pretrained model, which helps recognize novel objects with only semantic categories. The prior works mainly focus on knowledge transferring to the object proposal classification and employ class-agnostic box and mask prediction. In this work, we propose CondHead, a principled dynamic network design to better generalize the box regression and mask segmentation for open vocabulary setting. The core idea is to conditionally parameterize the network heads on semantic embedding and thus the model is guided with class-specific knowledge to better detect novel categories. Specifically, CondHead is composed of two streams of network heads, the dynamically aggregated head and the dynamically generated head. The former is instantiated with a set of static heads that are conditionally aggregated, these heads are optimized as experts and are expected to learn sophisticated prediction. The latter is instantiated with dynamically generated parameters and encodes general class-specific information. With such a conditional design, the detection model is bridged by the semantic embedding to offer strongly generalizable class-wise box and mask prediction. Our method brings significant improvement to the state-of-the-art open vocabulary object detection methods with very minor overhead, e.g., it surpasses a RegionClip model by 3.0 detection AP on novel categories, with only 1.1% more computation.
Abstract:As the quality of optical sensors improves, there is a need for processing large-scale images. In particular, the ability of devices to capture ultra-high definition (UHD) images and video places new demands on the image processing pipeline. In this paper, we consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution. We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms. As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method. The core components of LLFormer are the axis-based multi-head self-attention and cross-layer attention fusion block, which significantly reduces the linear complexity. Extensive experiments on the new dataset and existing public datasets show that LLFormer outperforms state-of-the-art methods. We also show that employing existing LLIE methods trained on our benchmark as a pre-processing step significantly improves the performance of downstream tasks, e.g., face detection in low-light conditions. The source code and pre-trained models are available at https://github.com/TaoWangzj/LLFormer.
Abstract:Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
Abstract:Text-based speech editing allows users to edit speech by intuitively cutting, copying, and pasting text to speed up the process of editing speech. In the previous work, CampNet (context-aware mask prediction network) is proposed to realize text-based speech editing, significantly improving the quality of edited speech. This paper aims at a new task: adding emotional effect to the editing speech during the text-based speech editing to make the generated speech more expressive. To achieve this task, we propose Emo-CampNet (emotion CampNet), which can provide the option of emotional attributes for the generated speech in text-based speech editing and has the one-shot ability to edit unseen speakers' speech. Firstly, we propose an end-to-end emotion-selectable text-based speech editing model. The key idea of the model is to control the emotion of generated speech by introducing additional emotion attributes based on the context-aware mask prediction network. Secondly, to prevent the emotion of the generated speech from being interfered by the emotional components in the original speech, a neutral content generator is proposed to remove the emotion from the original speech, which is optimized by the generative adversarial framework. Thirdly, two data augmentation methods are proposed to enrich the emotional and pronunciation information in the training set, which can enable the model to edit the unseen speaker's speech. The experimental results that 1) Emo-CampNet can effectively control the emotion of the generated speech in the process of text-based speech editing; And can edit unseen speakers' speech. 2) Detailed ablation experiments further prove the effectiveness of emotional selectivity and data augmentation methods. The demo page is available at https://hairuo55.github.io/Emo-CampNet/
Abstract:There are already some datasets used for fake audio detection, such as the ASVspoof and ADD datasets. However, these databases do not consider a situation that the emotion of the audio has been changed from one to another, while other information (e.g. speaker identity and content) remains the same. Changing emotions often leads to semantic changes. This may be a great threat to social stability. Therefore, this paper reports our progress in developing such an emotion fake audio detection dataset involving changing emotion state of the original audio. The dataset is named EmoFake. The fake audio in EmoFake is generated using the state-of-the-art emotion voice conversion models. Some benchmark experiments are conducted on this dataset. The results show that our designed dataset poses a challenge to the LCNN and RawNet2 baseline models of ASVspoof 2021.
Abstract:Existing deep learning based HDRTV reconstruction methods assume one kind of tone mapping operators (TMOs) as the degradation procedure to synthesize SDRTV-HDRTV pairs for supervised training. In this paper, we argue that, although traditional TMOs exploit efficient dynamic range compression priors, they have several drawbacks on modeling the realistic degradation: information over-preservation, color bias and possible artifacts, making the trained reconstruction networks hard to generalize well to real-world cases. To solve this problem, we propose a learning-based data synthesis approach to learn the properties of real-world SDRTVs by integrating several tone mapping priors into both network structures and loss functions. In specific, we design a conditioned two-stream network with prior tone mapping results as a guidance to synthesize SDRTVs by both global and local transformations. To train the data synthesis network, we form a novel self-supervised content loss to constraint different aspects of the synthesized SDRTVs at regions with different brightness distributions and an adversarial loss to emphasize the details to be more realistic. To validate the effectiveness of our approach, we synthesize SDRTV-HDRTV pairs with our method and use them to train several HDRTV reconstruction networks. Then we collect two inference datasets containing both labeled and unlabeled real-world SDRTVs, respectively. Experimental results demonstrate that, the networks trained with our synthesized data generalize significantly better to these two real-world datasets than existing solutions.
Abstract:Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
Abstract:Current end-to-end code-switching Text-to-Speech (TTS) can already generate high quality two languages speech in the same utterance with single speaker bilingual corpora. When the speakers of the bilingual corpora are different, the naturalness and consistency of the code-switching TTS will be poor. The cross-lingual embedding layers structure we proposed makes similar syllables in different languages relevant, thus improving the naturalness and consistency of generated speech. In the end-to-end code-switching TTS, there exists problem of prosody instability when synthesizing paragraph text. The text enhancement method we proposed makes the input contain prosodic information and sentence-level context information, thus improving the prosody stability of paragraph text. Experimental results demonstrate the effectiveness of the proposed methods in the naturalness, consistency, and prosody stability. In addition to Mandarin and English, we also apply these methods to Shanghaiese and Cantonese corpora, proving that the methods we proposed can be extended to other languages to build end-to-end code-switching TTS system.
Abstract:The manual ground truth of abdominal multi-organ is labor-intensive. In order to make full use of CT data, we developed a semi-supervised learning based dual-light UNet. In the training phase, it consists of two light UNets, which make full use of label and unlabeled data simultaneously by using consistent-based learning. Moreover, separable convolution and residual concatenation was introduced light UNet to reduce the computational cost. Further, a robust segmentation loss was applied to improve the performance. In the inference phase, only a light UNet is used, which required low time cost and less GPU memory utilization. The average DSC of this method in the validation set is 0.8718. The code is available in https://github.com/laihaoran/Semi-SupervisednnUNet.