Abstract:Pretraining on Graph Neural Networks (GNNs) has shown great power in facilitating various downstream tasks. As pretraining generally requires huge amount of data and computational resources, the pretrained GNNs are high-value Intellectual Properties (IP) of the legitimate owner. However, adversaries may illegally copy and deploy the pretrained GNN models for their downstream tasks. Though initial efforts have been made to watermark GNN classifiers for IP protection, these methods require the target classification task for watermarking, and thus are not applicable to self-supervised pretraining of GNN models. Hence, in this work, we propose a novel framework named PreGIP to watermark the pretraining of GNN encoder for IP protection while maintain the high-quality of the embedding space. PreGIP incorporates a task-free watermarking loss to watermark the embedding space of pretrained GNN encoder. A finetuning-resistant watermark injection is further deployed. Theoretical analysis and extensive experiments show the effectiveness of {\method} in IP protection and maintaining high-performance for downstream tasks.
Abstract:Graph Neural Networks (GNNs) have seen significant success in tasks such as node classification, largely contingent upon the availability of sufficient labeled nodes. Yet, the excessive cost of labeling large-scale graphs led to a focus on active learning on graphs, which aims for effective data selection to maximize downstream model performance. Notably, most existing methods assume reliable graph topology, while real-world scenarios often present noisy graphs. Given this, designing a successful active learning framework for noisy graphs is highly needed but challenging, as selecting data for labeling and obtaining a clean graph are two tasks naturally interdependent: selecting high-quality data requires clean graph structure while cleaning noisy graph structure requires sufficient labeled data. Considering the complexity mentioned above, we propose an active learning framework, GALClean, which has been specifically designed to adopt an iterative approach for conducting both data selection and graph purification simultaneously with best information learned from the prior iteration. Importantly, we summarize GALClean as an instance of the Expectation-Maximization algorithm, which provides a theoretical understanding of its design and mechanisms. This theory naturally leads to an enhanced version, GALClean+. Extensive experiments have demonstrated the effectiveness and robustness of our proposed method across various types and levels of noisy graphs.
Abstract:Few-shot node classification poses a significant challenge for Graph Neural Networks (GNNs) due to insufficient supervision and potential distribution shifts between labeled and unlabeled nodes. Self-training has emerged as a widely popular framework to leverage the abundance of unlabeled data, which expands the training set by assigning pseudo-labels to selected unlabeled nodes. Efforts have been made to develop various selection strategies based on confidence, information gain, etc. However, none of these methods takes into account the distribution shift between the training and testing node sets. The pseudo-labeling step may amplify this shift and even introduce new ones, hindering the effectiveness of self-training. Therefore, in this work, we explore the potential of explicitly bridging the distribution shift between the expanded training set and test set during self-training. To this end, we propose a novel Distribution-Consistent Graph Self-Training (DC-GST) framework to identify pseudo-labeled nodes that are both informative and capable of redeeming the distribution discrepancy and formulate it as a differentiable optimization task. A distribution-shift-aware edge predictor is further adopted to augment the graph and increase the model's generalizability in assigning pseudo labels. We evaluate our proposed method on four publicly available benchmark datasets and extensive experiments demonstrate that our framework consistently outperforms state-of-the-art baselines.
Abstract:Probabilistic learning to rank (LTR) has been the dominating approach for optimizing the ranking metric, but cannot maximize long-term rewards. Reinforcement learning models have been proposed to maximize user long-term rewards by formulating the recommendation as a sequential decision-making problem, but could only achieve inferior accuracy compared to LTR counterparts, primarily due to the lack of online interactions and the characteristics of ranking. In this paper, we propose a new off-policy value ranking (VR) algorithm that can simultaneously maximize user long-term rewards and optimize the ranking metric offline for improved sample efficiency in a unified Expectation-Maximization (EM) framework. We theoretically and empirically show that the EM process guides the leaned policy to enjoy the benefit of integration of the future reward and ranking metric, and learn without any online interactions. Extensive offline and online experiments demonstrate the effectiveness of our methods.
Abstract:Modeling complementary relationships greatly helps recommender systems to accurately and promptly recommend the subsequent items when one item is purchased. Unlike traditional similar relationships, items with complementary relationships may be purchased successively (such as iPhone and Airpods Pro), and they not only share relevance but also exhibit dissimilarity. Since the two attributes are opposites, modeling complementary relationships is challenging. Previous attempts to exploit these relationships have either ignored or oversimplified the dissimilarity attribute, resulting in ineffective modeling and an inability to balance the two attributes. Since Graph Neural Networks (GNNs) can capture the relevance and dissimilarity between nodes in the spectral domain, we can leverage spectral-based GNNs to effectively understand and model complementary relationships. In this study, we present a novel approach called Spectral-based Complementary Graph Neural Networks (SComGNN) that utilizes the spectral properties of complementary item graphs. We make the first observation that complementary relationships consist of low-frequency and mid-frequency components, corresponding to the relevance and dissimilarity attributes, respectively. Based on this spectral observation, we design spectral graph convolutional networks with low-pass and mid-pass filters to capture the low-frequency and mid-frequency components. Additionally, we propose a two-stage attention mechanism to adaptively integrate and balance the two attributes. Experimental results on four e-commerce datasets demonstrate the effectiveness of our model, with SComGNN significantly outperforming existing baseline models.
Abstract:Graph Contrastive Learning (GCL) has shown superior performance in representation learning in graph-structured data. Despite their success, most existing GCL methods rely on prefabricated graph augmentation and homophily assumptions. Thus, they fail to generalize well to heterophilic graphs where connected nodes may have different class labels and dissimilar features. In this paper, we study the problem of conducting contrastive learning on homophilic and heterophilic graphs. We find that we can achieve promising performance simply by considering an asymmetric view of the neighboring nodes. The resulting simple algorithm, Asymmetric Contrastive Learning for Graphs (GraphACL), is easy to implement and does not rely on graph augmentations and homophily assumptions. We provide theoretical and empirical evidence that GraphACL can capture one-hop local neighborhood information and two-hop monophily similarity, which are both important for modeling heterophilic graphs. Experimental results show that the simple GraphACL significantly outperforms state-of-the-art graph contrastive learning and self-supervised learning methods on homophilic and heterophilic graphs. The code of GraphACL is available at https://github.com/tengxiao1/GraphACL.
Abstract:Spectral Graph Neural Networks (GNNs) are gaining attention because they can surpass the limitations of message-passing GNNs by learning spectral filters that capture essential frequency information in graph data through task supervision. However, previous research suggests that the choice of filter frequency is tied to the graph's homophily level, a connection that hasn't been thoroughly explored in existing spectral GNNs. To address this gap, the study conducts both theoretical and empirical analyses, revealing that low-frequency filters have a positive correlation with homophily, while high-frequency filters have a negative correlation. This leads to the introduction of a shape-aware regularization technique applied to a Newton Interpolation-based spectral filter, enabling the customization of polynomial spectral filters that align with desired homophily levels. Extensive experiments demonstrate that NewtonNet successfully achieves the desired filter shapes and exhibits superior performance on both homophilous and heterophilous datasets.
Abstract:Imitation learning, which learns agent policy by mimicking expert demonstration, has shown promising results in many applications such as medical treatment regimes and self-driving vehicles. However, it remains a difficult task to interpret control policies learned by the agent. Difficulties mainly come from two aspects: 1) agents in imitation learning are usually implemented as deep neural networks, which are black-box models and lack interpretability; 2) the latent causal mechanism behind agents' decisions may vary along the trajectory, rather than staying static throughout time steps. To increase transparency and offer better interpretability of the neural agent, we propose to expose its captured knowledge in the form of a directed acyclic causal graph, with nodes being action and state variables and edges denoting the causal relations behind predictions. Furthermore, we design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs. Concretely, we conduct causal discovery from the perspective of Granger causality and propose a self-explainable imitation learning framework, {\method}. The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner. After the model is learned, we can obtain causal relations among states and action variables behind its decisions, exposing policies learned by it. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the proposed {\method} in learning the dynamic causal graphs for understanding the decision-making of imitation learning meanwhile maintaining high prediction accuracy.
Abstract:Semantic identifier (ID) is an important concept in information retrieval that aims to preserve the semantics of objects such as documents and items inside their IDs. Previous studies typically adopt a two-stage pipeline to learn semantic IDs by first procuring embeddings using off-the-shelf text encoders and then deriving IDs based on the embeddings. However, each step introduces potential information loss and there is usually an inherent mismatch between the distribution of embeddings within the latent space produced by text encoders and the anticipated distribution required for semantic indexing. Nevertheless, it is non-trivial to design a method that can learn the document's semantic representations and its hierarchical structure simultaneously, given that semantic IDs are discrete and sequentially structured, and the semantic supervision is deficient. In this paper, we introduce LMINDEXER, a self-supervised framework to learn semantic IDs with a generative language model. We tackle the challenge of sequential discrete ID by introducing a semantic indexer capable of generating neural sequential discrete representations with progressive training and contrastive learning. In response to the semantic supervision deficiency, we propose to train the model with a self-supervised document reconstruction objective. The learned semantic indexer can facilitate various downstream tasks, such as recommendation and retrieval. We conduct experiments on three tasks including recommendation, product search, and document retrieval on five datasets from various domains, where LMINDEXER outperforms competitive baselines significantly and consistently.
Abstract:Graph Contrastive Learning (GCL) has emerged as a popular unsupervised graph representation learning method. However, it has been shown that GCL is vulnerable to adversarial attacks on both the graph structure and node attributes. Although empirical approaches have been proposed to enhance the robustness of GCL, the certifiable robustness of GCL is still remain unexplored. In this paper, we develop the first certifiably robust framework in GCL. Specifically, we first propose a unified criteria to evaluate and certify the robustness of GCL. We then introduce a novel technique, RES (Randomized Edgedrop Smoothing), to ensure certifiable robustness for any GCL model, and this certified robustness can be provably preserved in downstream tasks. Furthermore, an effective training method is proposed for robust GCL. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed method in providing effective certifiable robustness and enhancing the robustness of any GCL model. The source code of RES is available at https://github.com/ventr1c/RES-GCL.