Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Self-supervised multimodal neuroimaging yields predictive representations for a spectrum of Alzheimer's phenotypes


Sep 07, 2022
Alex Fedorov, Eloy Geenjaar, Lei Wu, Tristan Sylvain, Thomas P. DeRamus, Margaux Luck, Maria Misiura, R Devon Hjelm, Sergey M. Plis, Vince D. Calhoun

Add code


   Access Paper or Ask Questions

The Sandbox Environment for Generalizable Agent Research (SEGAR)


Mar 19, 2022
R Devon Hjelm, Bogdan Mazoure, Florian Golemo, Felipe Frujeri, Mihai Jalobeanu, Andrey Kolobov

Add code


   Access Paper or Ask Questions

Robust Contrastive Learning against Noisy Views


Jan 12, 2022
Ching-Yao Chuang, R Devon Hjelm, Xin Wang, Vibhav Vineet, Neel Joshi, Antonio Torralba, Stefanie Jegelka, Yale Song

Add code


   Access Paper or Ask Questions

Cross-Trajectory Representation Learning for Zero-Shot Generalization in RL


Jun 04, 2021
Bogdan Mazoure, Ahmed M. Ahmed, Patrick MacAlpine, R Devon Hjelm, Andrey Kolobov

Add code


   Access Paper or Ask Questions

Understanding by Understanding Not: Modeling Negation in Language Models


May 07, 2021
Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R Devon Hjelm, Alessandro Sordoni, Aaron Courville

Add code


   Access Paper or Ask Questions

Zero-Shot Learning from scratch (ZFS): leveraging local compositional representations


Oct 22, 2020
Tristan Sylvain, Linda Petrini, R Devon Hjelm

Add code

* ICML 2019 Workshop on Understanding and Improving General-ization in Deep Learning, Long Beach, California, 2019 Spotlight presentation. arXiv admin note: text overlap with arXiv:1912.12179 

   Access Paper or Ask Questions

Implicit Regularization in Deep Learning: A View from Function Space


Aug 03, 2020
Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien

Add code

* 24 pages. A preliminary version of this work has been presented at the NeurIPS 2019 Workshops on "Machine Learning with Guarantees" and "Science meets Engineering of Deep Learning" 

   Access Paper or Ask Questions

Representation Learning with Video Deep InfoMax


Jul 28, 2020
R Devon Hjelm, Philip Bachman

Add code


   Access Paper or Ask Questions

Data-Efficient Reinforcement Learning with Momentum Predictive Representations


Jul 12, 2020
Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman

Add code

* The first two authors contributed equally to this work 

   Access Paper or Ask Questions

Deep Reinforcement and InfoMax Learning


Jun 12, 2020
Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, R Devon Hjelm

Add code


   Access Paper or Ask Questions

1
2
3
4
>>