Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Beyond Tabula Rasa: Reincarnating Reinforcement Learning


Jun 03, 2022
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, Marc G. Bellemare

Add code


   Access Paper or Ask Questions

The Primacy Bias in Deep Reinforcement Learning


May 16, 2022
Evgenii Nikishin, Max Schwarzer, Pierluca D'Oro, Pierre-Luc Bacon, Aaron Courville

Add code

* ICML 2022; code at https://github.com/evgenii-nikishin/rl_with_resets 

   Access Paper or Ask Questions

Simplicial Embeddings in Self-Supervised Learning and Downstream Classification


Apr 01, 2022
Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Kenji Kawaguchi, Ankit Vani, Aaron Courville

Add code

* 22 pages, 5 figures, 5 tables, Preprint 

   Access Paper or Ask Questions

Deep Reinforcement Learning at the Edge of the Statistical Precipice


Aug 30, 2021
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, Marc G. Bellemare

Add code


   Access Paper or Ask Questions

Pretraining Representations for Data-Efficient Reinforcement Learning


Jun 09, 2021
Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, Devon Hjelm, Philip Bachman, Aaron Courville

Add code


   Access Paper or Ask Questions

Iterated learning for emergent systematicity in VQA


May 03, 2021
Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, Aaron Courville

Add code

* Published as a conference paper at ICLR 2021. 9 pages main, 21 pages total including references and appendix 

   Access Paper or Ask Questions

Data-Efficient Reinforcement Learning with Momentum Predictive Representations


Jul 12, 2020
Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman

Add code

* The first two authors contributed equally to this work 

   Access Paper or Ask Questions

GEAR: Geometry-Aware Rényi Information


Jun 19, 2019
Jose Gallego, Ankit Vani, Max Schwarzer, Simon Lacoste-Julien

Add code


   Access Paper or Ask Questions

Learning to fail: Predicting fracture evolution in brittle materials using recurrent graph convolutional neural networks


Oct 14, 2018
Max Schwarzer, Bryce Rogan, Yadong Ruan, Zhengming Song, Diana Lee, Allon G. Percus, Viet T. Chau, Bryan A. Moore, Esteban Rougier, Hari S. Viswanathan, Gowri Srinivasan

Add code


   Access Paper or Ask Questions