Middle Tennessee State University
Abstract:Cross-domain recommendation (CDR) aims to enhance recommendation accuracy in a target domain with sparse data by leveraging rich information in a source domain, thereby addressing the data-sparsity problem. Some existing CDR methods highlight the advantages of extracting domain-common and domain-specific features to learn comprehensive user and item representations. However, these methods can't effectively disentangle these components as they often rely on simple user-item historical interaction information (such as ratings, clicks, and browsing), neglecting the rich multi-modal features. Additionally, they don't protect user-sensitive data from potential leakage during knowledge transfer between domains. To address these challenges, we propose a Privacy-Preserving Framework with Multi-Modal Data for Cross-Domain Recommendation, called P2M2-CDR. Specifically, we first design a multi-modal disentangled encoder that utilizes multi-modal information to disentangle more informative domain-common and domain-specific embeddings. Furthermore, we introduce a privacy-preserving decoder to mitigate user privacy leakage during knowledge transfer. Local differential privacy (LDP) is utilized to obfuscate the disentangled embeddings before inter-domain exchange, thereby enhancing privacy protection. To ensure both consistency and differentiation among these obfuscated disentangled embeddings, we incorporate contrastive learning-based domain-inter and domain-intra losses. Extensive Experiments conducted on four real-world datasets demonstrate that P2M2-CDR outperforms other state-of-the-art single-domain and cross-domain baselines.
Abstract:Generative Large Language Models (LLMs) stand as a revolutionary advancement in the modern era of artificial intelligence (AI). However, directly deploying LLMs in resource-constrained hardware, such as Internet-of-Things (IoT) devices, is difficult due to their high computational cost. In this paper, we propose a novel information-entropy framework for designing mobile-friendly generative language models. Our key design paradigm is to maximize the entropy of transformer decoders within the given computational budgets. The whole design procedure involves solving a mathematical programming (MP) problem, which can be done on the CPU within minutes, making it nearly zero-cost. We evaluate our designed models, termed MeRino, across nine NLP downstream tasks, showing their competitive performance against the state-of-the-art autoregressive transformer models under the mobile setting. Notably, MeRino achieves similar or better zero performance compared to the 350M parameter OPT while being 4.9x faster on NVIDIA Jetson Nano with 5.5x reduction in model size. Code will be made available soon.
Abstract:This paper explores a new post-hoc training-free compression paradigm for compressing Large Language Models (LLMs) to facilitate their wider adoption in various computing environments. We delve into the challenges of LLM compression, notably their dependency on extensive training data and computational resources. We propose a training-free approach dubbed Activation-aware Singular Value Decomposition (ASVD) to address these limitations. ASVD effectively manages activation outliers by adjusting the weight matrix based on the activation distribution, improving decomposition accuracy and efficiency. Our method also addresses the varying sensitivity of different LLM layers to decomposition, with an iterative calibration process for optimal layer-specific decomposition. Experiments demonstrate that ASVD can compress network by 10%-20% without losing reasoning capacities. Additionally, it can be seamlessly integrated with other LLM compression paradigms, showcasing its flexible compatibility. Code and compressed models are available at https://github.com/hahnyuan/ASVD4LLM.
Abstract:Graph research, the systematic study of interconnected data points represented as graphs, plays a vital role in capturing intricate relationships within networked systems. However, in the real world, as graphs scale up, concerns about data security among different data-owning agencies arise, hindering information sharing and, ultimately, the utilization of graph data. Therefore, establishing a mutual trust mechanism among graph agencies is crucial for unlocking the full potential of graphs. Here, we introduce a Cooperative Network Learning (CNL) framework to ensure secure graph computing for various graph tasks. Essentially, this CNL framework unifies the local and global perspectives of GNN computing with distributed data for an agency by virtually connecting all participating agencies as a global graph without a fixed central coordinator. Inter-agency computing is protected by various technologies inherent in our framework, including homomorphic encryption and secure transmission. Moreover, each agency has a fair right to design or employ various graph learning models from its local or global perspective. Thus, CNL can collaboratively train GNN models based on decentralized graphs inferred from local and global graphs. Experiments on contagion dynamics prediction and traditional graph tasks (i.e., node classification and link prediction) demonstrate that our CNL architecture outperforms state-of-the-art GNNs developed at individual sites, revealing that CNL can provide a reliable, fair, secure, privacy-preserving, and global perspective to build effective and personalized models for network applications. We hope this framework will address privacy concerns in graph-related research and integrate decentralized graph data structures to benefit the network research community in cooperation and innovation.
Abstract:This paper explores network binarization, a radical form of quantization, compressing model weights to a single bit, specifically for Large Language Models (LLMs) compression. Due to previous binarization methods collapsing LLMs, we propose a novel approach, Partially-Binarized LLM (PB-LLM), which can achieve extreme low-bit quantization while maintaining the linguistic reasoning capacity of quantized LLMs. Specifically, our exploration first uncovers the ineffectiveness of naive applications of existing binarization algorithms and highlights the imperative role of salient weights in achieving low-bit quantization. Thus, PB-LLM filters a small ratio of salient weights during binarization, allocating them to higher-bit storage, i.e., partially-binarization. PB-LLM is extended to recover the capacities of quantized LMMs, by analyzing from the perspective of post-training quantization (PTQ) and quantization-aware training (QAT). Under PTQ, combining the concepts from GPTQ, we reconstruct the binarized weight matrix guided by the Hessian matrix and successfully recover the reasoning capacity of PB-LLM in low-bit. Under QAT, we freeze the salient weights during training, explore the derivation of optimal scaling factors crucial for minimizing the quantization error, and propose a scaling mechanism based on this derived scaling strategy for residual binarized weights. Those explorations and the developed methodologies significantly contribute to rejuvenating the performance of low-bit quantized LLMs and present substantial advancements in the field of network binarization for LLMs.The code is available at https://github.com/hahnyuan/BinaryLLM.
Abstract:Despite the recent successes of vanilla Graph Neural Networks (GNNs) on many tasks, their foundation on pairwise interaction networks inherently limits their capacity to discern latent higher-order interactions in complex systems. To bridge this capability gap, we propose a novel approach exploiting the rich mathematical theory of simplicial complexes (SCs) - a robust tool for modeling higher-order interactions. Current SC-based GNNs are burdened by high complexity and rigidity, and quantifying higher-order interaction strengths remains challenging. Innovatively, we present a higher-order Flower-Petals (FP) model, incorporating FP Laplacians into SCs. Further, we introduce a Higher-order Graph Convolutional Network (HiGCN) grounded in FP Laplacians, capable of discerning intrinsic features across varying topological scales. By employing learnable graph filters, a parameter group within each FP Laplacian domain, we can identify diverse patterns where the filters' weights serve as a quantifiable measure of higher-order interaction strengths. The theoretical underpinnings of HiGCN's advanced expressiveness are rigorously demonstrated. Additionally, our empirical investigations reveal that the proposed model accomplishes state-of-the-art (SOTA) performance on a range of graph tasks and provides a scalable and flexible solution to explore higher-order interactions in graphs.
Abstract:Few-shot segmentation (FSS) is a dense prediction task that aims to infer the pixel-wise labels of unseen classes using only a limited number of annotated images. The key challenge in FSS is to classify the labels of query pixels using class prototypes learned from the few labeled support exemplars. Prior approaches to FSS have typically focused on learning class-wise descriptors independently from support images, thereby ignoring the rich contextual information and mutual dependencies among support-query features. To address this limitation, we propose a joint learning method termed Masked Cross-Image Encoding (MCE), which is designed to capture common visual properties that describe object details and to learn bidirectional inter-image dependencies that enhance feature interaction. MCE is more than a visual representation enrichment module; it also considers cross-image mutual dependencies and implicit guidance. Experiments on FSS benchmarks PASCAL-$5^i$ and COCO-$20^i$ demonstrate the advanced meta-learning ability of the proposed method.
Abstract:Packing is a required step in a typical FPGA CAD flow. It has high impacts to the performance of FPGA placement and routing. Early prediction of packing results can guide design optimization and expedite design closure. In this work, we propose an imbalanced large graph learning framework, ImLG, for prediction of whether logic elements will be packed after placement. Specifically, we propose dedicated feature extraction and feature aggregation methods to enhance the node representation learning of circuit graphs. With imbalanced distribution of packed and unpacked logic elements, we further propose techniques such as graph oversampling and mini-batch training for this imbalanced learning task in large circuit graphs. Experimental results demonstrate that our framework can improve the F1 score by 42.82% compared to the most recent Gaussian-based prediction method. Physical design results show that the proposed method can assist the placer in improving routed wirelength by 0.93% and SLICE occupation by 0.89%.
Abstract:Simplicial complexes have recently been in the limelight of higher-order network analysis, where a minority of simplices play crucial roles in structures and functions due to network heterogeneity. We find a significant inconsistency between identifying influential nodes and simplices. Therefore, it remains elusive how to characterize simplices' influence and identify influential simplices, despite the relative maturity of research on influential nodes (0-simplices) identification. Meanwhile, graph neural networks (GNNs) are potent tools that can exploit network topology and node features simultaneously, but they struggle to tackle higher-order tasks. In this paper, we propose a higher-order graph learning model, named influential simplices mining neural network (ISMnet), to identify vital h-simplices in simplicial complexes. It can tackle higher-order tasks by leveraging novel higher-order presentations: hierarchical bipartite graphs and higher-order hierarchical (HoH) Laplacians, where targeted simplices are grouped into a hub set and can interact with other simplices. Furthermore, ISMnet employs learnable graph convolutional operators in each HoH Laplacian domain to capture interactions among simplices, and it can identify influential simplices of arbitrary order by changing the hub set. Empirical results demonstrate that ISMnet significantly outperforms existing methods in ranking 0-simplices (nodes) and 2-simplices. In general, this novel framework excels in identifying influential simplices and promises to serve as a potent tool in higher-order network analysis.
Abstract:Due to shortage of water resources and increasing water demands, the joint operation of multireservoir systems for balancing power generation, ecological protection, and the residential water supply has become a critical issue in hydropower management. However, the numerous constraints and nonlinearity of multiple reservoirs make solving this problem time-consuming. To address this challenge, a deep reinforcement learning approach that incorporates a transformer framework is proposed. The multihead attention mechanism of the encoder effectively extracts information from reservoirs and residential areas, and the multireservoir attention network of the decoder generates suitable operational decisions. The proposed method is applied to Lake Mead and Lake Powell in the Colorado River Basin. The experimental results demonstrate that the transformer-based deep reinforcement learning approach can produce appropriate operational outcomes. Compared to a state-of-the-art method, the operation strategies produced by the proposed approach generate 10.11% more electricity, reduce the amended annual proportional flow deviation by 39.69%, and increase water supply revenue by 4.10%. Consequently, the proposed approach offers an effective method for the multiobjective operation of multihydropower reservoir systems.