Lattice
Abstract:Fabricating and designing 3D garments has become extremely demanding with the increasing need for synthesizing realistic dressed persons for a variety of applications, e.g. 3D virtual try-on, digitalization of 2D clothes into 3D apparel, and cloth animation. It thus necessitates a simple and straightforward pipeline to obtain high-quality texture from simple input, such as 2D reference images. Since traditional warping-based texture generation methods require a significant number of control points to be manually selected for each type of garment, which can be a time-consuming and tedious process. We propose a novel method, called Cloth2Tex, which eliminates the human burden in this process. Cloth2Tex is a self-supervised method that generates texture maps with reasonable layout and structural consistency. Another key feature of Cloth2Tex is that it can be used to support high-fidelity texture inpainting. This is done by combining Cloth2Tex with a prevailing latent diffusion model. We evaluate our approach both qualitatively and quantitatively and demonstrate that Cloth2Tex can generate high-quality texture maps and achieve the best visual effects in comparison to other methods. Project page: tomguluson92.github.io/projects/cloth2tex/
Abstract:Stochastic sequential quadratic optimization (SQP) methods for solving continuous optimization problems with nonlinear equality constraints have attracted attention recently, such as for solving large-scale data-fitting problems subject to nonconvex constraints. However, for a recently proposed subclass of such methods that is built on the popular stochastic-gradient methodology from the unconstrained setting, convergence guarantees have been limited to the asymptotic convergence of the expected value of a stationarity measure to zero. This is in contrast to the unconstrained setting in which almost-sure convergence guarantees (of the gradient of the objective to zero) can be proved for stochastic-gradient-based methods. In this paper, new almost-sure convergence guarantees for the primal iterates, Lagrange multipliers, and stationarity measures generated by a stochastic SQP algorithm in this subclass of methods are proved. It is shown that the error in the Lagrange multipliers can be bounded by the distance of the primal iterate to a primal stationary point plus the error in the latest stochastic gradient estimate. It is further shown that, subject to certain assumptions, this latter error can be made to vanish by employing a running average of the Lagrange multipliers that are computed during the run of the algorithm. The results of numerical experiments are provided to demonstrate the proved theoretical guarantees.
Abstract:The concept of GenAI has been developed for decades. Until recently, it has impressed us with substantial breakthroughs in natural language processing and computer vision, actively engaging in industrial scenarios. Noticing the practical challenges, e.g., limited learning resources, and overly dependencies on scientific discovery empiricism, we nominate large-scale generative simulation artificial intelligence (LS-GenAI) as the next hotspot for GenAI to connect.
Abstract:Deep neural networks rely on parallel processors for acceleration. To design operators for them, it requires not only good algorithm to reduce complexity, but also sufficient utilization of hardwares. Convolutional layers mainly contain 3 kinds of operators: convolution in forward propagation, deconvolution and dilated-convolution in backward propagation. When executing these operators, 0s are always added to tensors, causing redundant calculations. This paper gives C-K-S algorithm (ConvV2, KS-deconv, Sk-dilated), which skips these 0s in two ways: trim the filters to exclude padded 0s; transform sparse tensors to dense tensors, to avoid inserted 0s in deconvolution and dilated-convolution. In contrast to regular convolution, deconvolution is hard to accelerate due to its complicacy. This paper provides high-performance GPU implementations of C-K-S, and verifies their effectiveness with comparison to PyTorch. According to the experiments, C-K-S has advantages over PyTorch in certain cases, especially in deconvolution on small feature-maps. Further enhancement of C-K-S can be done by making full optimizations oriented at specific GPU architectures.
Abstract:Music accompaniment generation is a crucial aspect in the composition process. Deep neural networks have made significant strides in this field, but it remains a challenge for AI to effectively incorporate human emotions to create beautiful accompaniments. Existing models struggle to effectively characterize human emotions within neural network models while composing music. To address this issue, we propose the use of an easy-to-represent emotion flow model, the Valence/Arousal Curve, which allows for the compatibility of emotional information within the model through data transformation and enhances interpretability of emotional factors by utilizing a Variational Autoencoder as the model structure. Further, we used relative self-attention to maintain the structure of the music at music phrase level and to generate a richer accompaniment when combined with the rules of music theory.
Abstract:Autism spectrum disorder (ASD) is a prevalent psychiatric condition characterized by atypical cognitive, emotional, and social patterns. Timely and accurate diagnosis is crucial for effective interventions and improved outcomes in individuals with ASD. In this study, we propose a novel Multi-Atlas Enhanced Transformer framework, METAFormer, ASD classification. Our framework utilizes resting-state functional magnetic resonance imaging data from the ABIDE I dataset, comprising 406 ASD and 476 typical control (TC) subjects. METAFormer employs a multi-atlas approach, where flattened connectivity matrices from the AAL, CC200, and DOS160 atlases serve as input to the transformer encoder. Notably, we demonstrate that self-supervised pretraining, involving the reconstruction of masked values from the input, significantly enhances classification performance without the need for additional or separate training data. Through stratified cross-validation, we evaluate the proposed framework and show that it surpasses state-of-the-art performance on the ABIDE I dataset, with an average accuracy of 83.7% and an AUC-score of 0.832. The code for our framework is available at https://github.com/Lugges991/METAFormer
Abstract:Challenges drive the state-of-the-art of automated medical image analysis. The quantity of public training data that they provide can limit the performance of their solutions. Public access to the training methodology for these solutions remains absent. This study implements the Type Three (T3) challenge format, which allows for training solutions on private data and guarantees reusable training methodologies. With T3, challenge organizers train a codebase provided by the participants on sequestered training data. T3 was implemented in the STOIC2021 challenge, with the goal of predicting from a computed tomography (CT) scan whether subjects had a severe COVID-19 infection, defined as intubation or death within one month. STOIC2021 consisted of a Qualification phase, where participants developed challenge solutions using 2000 publicly available CT scans, and a Final phase, where participants submitted their training methodologies with which solutions were trained on CT scans of 9724 subjects. The organizers successfully trained six of the eight Final phase submissions. The submitted codebases for training and running inference were released publicly. The winning solution obtained an area under the receiver operating characteristic curve for discerning between severe and non-severe COVID-19 of 0.815. The Final phase solutions of all finalists improved upon their Qualification phase solutions.HSUXJM-TNZF9CHSUXJM-TNZF9C
Abstract:We present the RSSOD-Bench dataset for salient object detection (SOD) in optical remote sensing imagery. While SOD has achieved success in natural scene images with deep learning, research in SOD for remote sensing imagery (RSSOD) is still in its early stages. Existing RSSOD datasets have limitations in terms of scale, and scene categories, which make them misaligned with real-world applications. To address these shortcomings, we construct the RSSOD-Bench dataset, which contains images from four different cities in the USA. The dataset provides annotations for various salient object categories, such as buildings, lakes, rivers, highways, bridges, aircraft, ships, athletic fields, and more. The salient objects in RSSOD-Bench exhibit large-scale variations, cluttered backgrounds, and different seasons. Unlike existing datasets, RSSOD-Bench offers uniform distribution across scene categories. We benchmark 23 different state-of-the-art approaches from both the computer vision and remote sensing communities. Experimental results demonstrate that more research efforts are required for the RSSOD task.
Abstract:Training visual reinforcement learning (RL) models in offline datasets is challenging due to overfitting issues in representation learning and overestimation problems in value function. In this paper, we propose a transfer learning method called Collaborative World Models (CoWorld) to improve the performance of visual RL under offline conditions. The core idea is to use an easy-to-interact, off-the-shelf simulator to train an auxiliary RL model as the online "test bed" for the offline policy learned in the target domain, which provides a flexible constraint for the value function -- Intuitively, we want to mitigate the overestimation problem of value functions outside the offline data distribution without impeding the exploration of actions with potential advantages. Specifically, CoWorld performs domain-collaborative representation learning to bridge the gap between online and offline hidden state distributions. Furthermore, it performs domain-collaborative behavior learning that enables the source RL agent to provide target-aware value estimation, allowing for effective offline policy regularization. Experiments show that CoWorld significantly outperforms existing methods in offline visual control tasks in DeepMind Control and Meta-World.
Abstract:Large Language Models (LLMs) have demonstrated exceptional performance in a variety of tasks, including essay writing and question answering. However, it is crucial to address the potential misuse of these models, which can lead to detrimental outcomes such as plagiarism and spamming. Recently, several detectors have been proposed, including fine-tuned classifiers and various statistical methods. In this study, we reveal that with the aid of carefully crafted prompts, LLMs can effectively evade these detection systems. We propose a novel Substitution-based In-Context example Optimization method (SICO) to automatically generate such prompts. On three real-world tasks where LLMs can be misused, SICO successfully enables ChatGPT to evade six existing detectors, causing a significant 0.54 AUC drop on average. Surprisingly, in most cases these detectors perform even worse than random classifiers. These results firmly reveal the vulnerability of existing detectors. Finally, the strong performance of SICO suggests itself as a reliable evaluation protocol for any new detector in this field.