Non-terrestrial networks (NTNs) are considered one of the key enablers in sixth-generation (6G) wireless networks; and with their rapid growth, system-level metrics analysis adds crucial understanding into NTN system performance. Applying stochastic geometry (SG) as a system-level analysis tool in the context of NTN offers novel insights into the network tradeoffs. In this paper, we study and highlight NTN common system-level metrics from three perspectives: NTN platform types, typical communication issues, and application scenarios. In addition to summarizing existing research, we study the best-suited SG models for different platforms and system-level metrics which have not been well studied in the literature. In addition, we showcase NTN-dominated prospective application scenarios. Finally, we carry out a performance analysis of system-level metrics for these applications based on SG models.
Decades of progress in simulation-based surrogate-assisted optimization and unprecedented growth in computational power have enabled researchers and practitioners to optimize previously intractable complex engineering problems. This paper investigates the possible benefit of a concurrent utilization of multiple simulation-based surrogate models to solve complex discrete optimization problems. To fulfill this, the so-called Self-Adaptive Multi-surrogate Assisted Efficient Global Optimization algorithm (SAMA-DiEGO), which features a two-stage online model management strategy, is proposed and further benchmarked on fifteen binary-encoded combinatorial and fifteen ordinal problems against several state-of-the-art non-surrogate or single surrogate assisted optimization algorithms. Our findings indicate that SAMA-DiEGO can rapidly converge to better solutions on a majority of the test problems, which shows the feasibility and advantage of using multiple surrogate models in optimizing discrete problems.
Weakly-supervised learning has become a popular technology in recent years. In this paper, we propose a novel medical image classification algorithm, called Weakly-Supervised Generative Adversarial Networks (WSGAN), which only uses a small number of real images without labels to generate fake images or mask images to enlarge the sample size of the training set. First, we combine with MixMatch to generate pseudo labels for the fake images and unlabeled images to do the classification. Second, contrastive learning and self-attention mechanism are introduced into the proposed problem to enhance the classification accuracy. Third, the problem of mode collapse is well addressed by cyclic consistency loss. Finally, we design global and local classifiers to complement each other with the key information needed for classification. The experimental results on four medical image datasets show that WSGAN can obtain relatively high learning performance by using few labeled and unlabeled data. For example, the classification accuracy of WSGAN is 11% higher than that of the second-ranked MIXMATCH with 100 labeled images and 1000 unlabeled images on the OCT dataset. In addition, we also conduct ablation experiments to verify the effectiveness of our algorithm.
Kronecker-factored Approximate Curvature (K-FAC) has recently been shown to converge faster in deep neural network (DNN) training than stochastic gradient descent (SGD); however, K-FAC's larger memory footprint hinders its applicability to large models. We present KAISA, a K-FAC-enabled, Adaptable, Improved, and ScAlable second-order optimizer framework that adapts the memory footprint, communication, and computation given specific models and hardware to achieve maximized performance and enhanced scalability. We quantify the tradeoffs between memory and communication cost and evaluate KAISA on large models, including ResNet-50, Mask R-CNN, U-Net, and BERT, on up to 128 NVIDIA A100 GPUs. Compared to the original optimizers, KAISA converges 18.1-36.3% faster across applications with the same global batch size. Under a fixed memory budget, KAISA converges 32.5% and 41.6% faster in ResNet-50 and BERT-Large, respectively. KAISA can balance memory and communication to achieve scaling efficiency equal to or better than the baseline optimizers.
Systematic Generalization refers to a learning algorithm's ability to extrapolate learned behavior to unseen situations that are distinct but semantically similar to its training data. As shown in recent work, state-of-the-art deep learning models fail dramatically even on tasks for which they are designed when the test set is systematically different from the training data. We hypothesize that explicitly modeling the relations between objects in their contexts while learning their representations will help achieve systematic generalization. Therefore, we propose a novel method that learns objects' contextualized embeddings with dynamic message passing conditioned on the input natural language and end-to-end trainable with other downstream deep learning modules. To our knowledge, this model is the first one that significantly outperforms the provided baseline and reaches state-of-the-art performance on grounded-SCAN (gSCAN), a grounded natural language navigation dataset designed to require systematic generalization in its test splits.
Accurate knowledge of the distribution system topology and parameters is required to achieve good voltage controls, but this is difficult to obtain in practice. This paper develops a model-free approach based on the surrogate model and deep reinforcement learning (DRL). We have also extended it to deal with unbalanced three-phase scenarios. The key idea is to learn a surrogate model to capture the relationship between the power injections and voltage fluctuation of each node from historical data instead of using the original inaccurate model affected by errors and uncertainties. This allows us to integrate the DRL with the learned surrogate model. In particular, DRL is applied to learn the optimal control strategy from the experiences obtained by continuous interactions with the surrogate model. The integrated framework contains training three networks, i.e., surrogate model, actor, and critic networks, which fully leverage the strong nonlinear fitting ability of deep learning and DRL for online decision making. Several single-phase approaches have also been extended to deal with three-phase unbalance scenarios and the simulation results on the IEEE 123-bus system show that our proposed method can achieve similar performance as those that use accurate physical models.
With the rapid development of mobile Internet technology and the widespread use of mobile devices, it becomes much easier for people to express their opinions on social media. The openness and convenience of social media platforms provide a free expression for people but also cause new social problems. The widespread of false rumors on social media can bring about the panic of the public and damage personal reputation, which makes rumor automatic detection technology become particularly necessary. The majority of existing methods for rumor detection focus on mining effective features from text contents, user profiles, and patterns of propagation. Nevertheless, these methods do not take full advantage of global semantic relations of the text contents, which characterize the semantic commonality of rumors as a key factor for detecting rumors. In this paper, we construct a tweet-word-user heterogeneous graph based on the text contents and the source tweet propagations of rumors. A meta-path based heterogeneous graph attention network framework is proposed to capture the global semantic relations of text contents, together with the global structure information of source tweet propagations for rumor detection. Experiments on real-world Twitter data demonstrate the superiority of the proposed approach, which also has a comparable ability to detect rumors at a very early stage.
This paper proposes a data-driven distributed voltage control approach based on the spectrum clustering and the enhanced multi-agent deep reinforcement learning (MADRL) algorithm. Via the unsupervised clustering, the whole distribution system can be decomposed into several sub-networks according to the voltage and reactive power sensitivity. Then, the distributed control problem of each sub-network is modeled as Markov games and solved by the enhanced MADRL algorithm, where each sub-network is modeled as an adaptive agent. Deep neural networks are used in each agent to approximate the policy function and the action value function. All agents are centrally trained to learn the optimal coordinated voltage regulation strategy while executed in a distributed manner to make decisions based on only local information. The proposed method can significantly reduce the requirements of communications and knowledge of system parameters. It also effectively deals with uncertainties and can provide online coordinated control based on the latest local information. Comparison results with other existing model-based and data-driven methods on IEEE 33-bus and 123-bus systems demonstrate the effectiveness and benefits of the proposed approach.