Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Spartan: Differentiable Sparsity via Regularized Transportation


May 27, 2022
Kai Sheng Tai, Taipeng Tian, Ser-Nam Lim

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed Self-Training


Feb 17, 2021
Kai Sheng Tai, Peter Bailis, Gregory Valiant

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Equivariant Transformer Networks


Jan 25, 2019
Kai Sheng Tai, Peter Bailis, Gregory Valiant

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Fast and Accurate Low-Rank Factorization of Compressively-Sensed Data


May 30, 2018
Vatsal Sharan, Kai Sheng Tai, Peter Bailis, Gregory Valiant

Add code

* 17 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Sketching Linear Classifiers over Data Streams


Apr 06, 2018
Kai Sheng Tai, Vatsal Sharan, Peter Bailis, Gregory Valiant

Add code

* Full version of paper appearing at SIGMOD 2018 with more detailed proofs of theoretical results. Code available at https://github.com/stanford-futuredata/wmsketch 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks


May 30, 2015
Kai Sheng Tai, Richard Socher, Christopher D. Manning

Add code

* Accepted for publication at ACL 2015 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email