Alert button
Picture for Nana Liu

Nana Liu

Alert button

ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators

Jun 16, 2023
Sungduk Yu, Walter M. Hannah, Liran Peng, Mohamed Aziz Bhouri, Ritwik Gupta, Jerry Lin, Björn Lütjens, Justus C. Will, Tom Beucler, Bryce E. Harrop, Benjamin R. Hillman, Andrea M. Jenney, Savannah L. Ferretti, Nana Liu, Anima Anandkumar, Noah D. Brenowitz, Veronika Eyring, Pierre Gentine, Stephan Mandt, Jaideep Pathak, Carl Vondrick, Rose Yu, Laure Zanna, Ryan P. Abernathey, Fiaz Ahmed, David C. Bader, Pierre Baldi, Elizabeth A. Barnes, Gunnar Behrens, Christopher S. Bretherton, Julius J. M. Busecke, Peter M. Caldwell, Wayne Chuang, Yilun Han, Yu Huang, Fernando Iglesias-Suarez, Sanket Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten Kurth, Nicholas J. Lutsko, Po-Lun Ma, Griffin Mooers, J. David Neelin, David A. Randall, Sara Shamekh, Akshay Subramaniam, Mark A. Taylor, Nathan M. Urban, Janni Yuval, Guang J. Zhang, Tian Zheng, Michael S. Pritchard

Figure 1 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
Figure 2 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
Figure 3 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
Figure 4 for ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators

Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise prediction of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state. The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society.

Viaarxiv icon

Optimal Provable Robustness of Quantum Classification via Quantum Hypothesis Testing

Sep 21, 2020
Maurice Weber, Nana Liu, Bo Li, Ce Zhang, Zhikuan Zhao

Figure 1 for Optimal Provable Robustness of Quantum Classification via Quantum Hypothesis Testing
Figure 2 for Optimal Provable Robustness of Quantum Classification via Quantum Hypothesis Testing
Figure 3 for Optimal Provable Robustness of Quantum Classification via Quantum Hypothesis Testing
Figure 4 for Optimal Provable Robustness of Quantum Classification via Quantum Hypothesis Testing

Quantum machine learning models have the potential to offer speedups and better predictive accuracy compared to their classical counterparts. However, these quantum algorithms, like their classical counterparts, have been shown to also be vulnerable to input perturbations, in particular for classification problems. These can arise either from noisy implementations or, as a worst-case type of noise, adversarial attacks. These attacks can undermine both the reliability and security of quantum classification algorithms. In order to develop defence mechanisms and to better understand the reliability of these algorithms, it is crucial to understand their robustness properties in presence of both natural noise sources and adversarial manipulation. From the observation that, unlike in the classical setting, measurements involved in quantum classification algorithms are naturally probabilistic, we uncover and formalize a fundamental link between binary quantum hypothesis testing (QHT) and provably robust quantum classification. Then from the optimality of QHT, we prove a robustness condition, which is tight under modest assumptions, and enables us to develop a protocol to certify robustness. Since this robustness condition is a guarantee against the worst-case noise scenarios, our result naturally extends to scenarios in which the noise source is known. Thus we also provide a framework to study the reliability of quantum classification protocols under more general settings.

* 25 pages, 4 figures 
Viaarxiv icon

Quantum noise protects quantum classifiers against adversaries

Mar 20, 2020
Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, Nana Liu

Figure 1 for Quantum noise protects quantum classifiers against adversaries
Figure 2 for Quantum noise protects quantum classifiers against adversaries
Figure 3 for Quantum noise protects quantum classifiers against adversaries
Figure 4 for Quantum noise protects quantum classifiers against adversaries

Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies. However, noise has often played beneficial roles, from enhancing weak signals in stochastic resonance to protecting the privacy of data in differential privacy. It is then natural to ask, can we harness the power of quantum noise that is beneficial to quantum computing? An important current direction for quantum computing is its application to machine learning, such as classification problems. One outstanding problem in machine learning for classification is its sensitivity to adversarial examples. These are small, undetectable perturbations from the original data where the perturbed data is completely misclassified in otherwise extremely accurate classifiers. They can also be considered as `worst-case' perturbations by unknown noise sources. We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived where the robustness improves with increasing noise. This robustness property is intimately connected with an important security concept called differential privacy which can be extended to quantum differential privacy. For the protection of quantum data, this is the first quantum protocol that can be used against the most general adversaries. Furthermore, we show how the robustness in the classical case can be sensitive to the details of the classification model, but in the quantum case the details of classification model are absent, thus also providing a potential quantum advantage for classical data that is independent of quantum speedups. This opens the opportunity to explore other ways in which quantum noise can be used in our favour, as well as identifying other ways quantum algorithms can be helpful that is independent of quantum speedups.

* 16 pages, 8 figures 
Viaarxiv icon

Data Sanity Check for Deep Learning Systems via Learnt Assertions

Sep 28, 2019
Haochuan Lu, Huanlin Xu, Nana Liu, Yangfan Zhou, Xin Wang

Figure 1 for Data Sanity Check for Deep Learning Systems via Learnt Assertions
Figure 2 for Data Sanity Check for Deep Learning Systems via Learnt Assertions

Reliability is a critical consideration to DL-based systems. But the statistical nature of DL makes it quite vulnerable to invalid inputs, i.e., those cases that are not considered in the training phase of a DL model. This paper proposes to perform data sanity check to identify invalid inputs, so as to enhance the reliability of DL-based systems. We design and implement a tool to detect behavior deviation of a DL model when processing an input case. This tool extracts the data flow footprints and conducts an assertion-based validation mechanism. The assertions are built automatically, which are specifically-tailored for DL model data flow analysis. Our experiments conducted with real-world scenarios demonstrate that such an assertion-based data sanity check mechanism is effective in identifying invalid input cases.

Viaarxiv icon