Abstract:Musculoskeletal disorders represent a leading cause of global disability, creating an urgent demand for precise interpretation of medical imaging. Current artificial intelligence (AI) approaches in orthopedics predominantly rely on task-specific, supervised learning paradigms. These methods are inherently fragmented, require extensive annotated datasets, and often lack generalizability across different modalities and clinical scenarios. The development of foundation models in this field has been constrained by the scarcity of large-scale, curated, and open-source musculoskeletal datasets. To address these challenges, we introduce OrthoFoundation, a multimodal vision foundation model optimized for musculoskeletal pathology. We constructed a pre-training dataset of 1.2 million unlabeled knee X-ray and MRI images from internal and public databases. Utilizing a Dinov3 backbone, the model was trained via self-supervised contrastive learning to capture robust radiological representations. OrthoFoundation achieves state-of-the-art (SOTA) performance across 14 downstream tasks. It attained superior accuracy in X-ray osteoarthritis diagnosis and ranked first in MRI structural injury detection. The model demonstrated remarkable label efficiency, matching supervised baselines using only 50% of labeled data. Furthermore, despite being pre-trained on knee images, OrthoFoundation exhibited exceptional cross-anatomy generalization to the hip, shoulder, and ankle. OrthoFoundation represents a significant advancement toward general-purpose AI for musculoskeletal imaging. By learning fundamental, joint-agnostic radiological semantics from large-scale multimodal data, it overcomes the limitations of conventional models, which provides a robust framework for reducing annotation burdens and enhancing diagnostic accuracy in clinical practice.
Abstract:Background: The rapid integration of foundation models into clinical practice and public health necessitates a rigorous evaluation of their true clinical reasoning capabilities beyond narrow examination success. Current benchmarks, typically based on medical licensing exams or curated vignettes, fail to capture the integrated, multimodal reasoning essential for real-world patient care. Methods: We developed the Bones and Joints (B&J) Benchmark, a comprehensive evaluation framework comprising 1,245 questions derived from real-world patient cases in orthopedics and sports medicine. This benchmark assesses models across 7 tasks that mirror the clinical reasoning pathway, including knowledge recall, text and image interpretation, diagnosis generation, treatment planning, and rationale provision. We evaluated eleven vision-language models (VLMs) and six large language models (LLMs), comparing their performance against expert-derived ground truth. Results: Our results demonstrate a pronounced performance gap between task types. While state-of-the-art models achieved high accuracy, exceeding 90%, on structured multiple-choice questions, their performance markedly declined on open-ended tasks requiring multimodal integration, with accuracy scarcely reaching 60%. VLMs demonstrated substantial limitations in interpreting medical images and frequently exhibited severe text-driven hallucinations, often ignoring contradictory visual evidence. Notably, models specifically fine-tuned for medical applications showed no consistent advantage over general-purpose counterparts. Conclusions: Current artificial intelligence models are not yet clinically competent for complex, multimodal reasoning. Their safe deployment should currently be limited to supportive, text-based roles. Future advancement in core clinical tasks awaits fundamental breakthroughs in multimodal integration and visual understanding.




Abstract:Fine-grained fire prediction plays a crucial role in emergency response. Infrared images and fire masks provide complementary thermal and boundary information, yet current methods are predominantly limited to binary mask modeling with inherent signal sparsity, failing to capture the complex dynamics of fire. While world models show promise in video generation, their physical inconsistencies pose significant challenges for fire forecasting. This paper introduces PhysFire-WM, a Physics-informed World Model for emulating Fire spread dynamics. Our approach internalizes combustion dynamics by encoding structured priors from a Physical Simulator to rectify physical discrepancies, coupled with a Cross-task Collaborative Training strategy (CC-Train) that alleviates the issue of limited information in mask-based modeling. Through parameter sharing and gradient coordination, CC-Train effectively integrates thermal radiation dynamics and spatial boundary delineation, enhancing both physical realism and geometric accuracy. Extensive experiments on a fine-grained multimodal fire dataset demonstrate the superior accuracy of PhysFire-WM in fire spread prediction. Validation underscores the importance of physical priors and cross-task collaboration, providing new insights for applying physics-informed world models to disaster prediction.




Abstract:This paper addresses the challenge of achieving optimal Quality of Information (QoI) in non-dedicated vehicular mobile crowdsensing (NVMCS) systems. The key obstacles are the interrelated issues of sensing coverage, sensing reliability, and the dynamic participation of vehicles. To tackle these, we propose QUIDS, a QUality-informed Incentive-driven multi-agent Dispatching System, which ensures high sensing coverage and reliability under budget constraints. QUIDS introduces a novel metric, Aggregated Sensing Quality (ASQ), to quantitatively capture QoI by integrating both coverage and reliability. We also develop a Mutually Assisted Belief-aware Vehicle Dispatching algorithm that estimates sensing reliability and allocates incentives under uncertainty, further improving ASQ. Evaluation using real-world data from a metropolitan NVMCS deployment shows QUIDS improves ASQ by 38% over non-dispatching scenarios and by 10% over state-of-the-art methods. It also reduces reconstruction map errors by 39-74% across algorithms. By jointly optimizing coverage and reliability via a quality-informed incentive mechanism, QUIDS enables low-cost, high-quality urban monitoring without dedicated infrastructure, applicable to smart-city scenarios like traffic and environmental sensing.




Abstract:The Medical Segment Anything Model (MedSAM) has shown remarkable performance in medical image segmentation, drawing significant attention in the field. However, its sensitivity to varying prompt types and locations poses challenges. This paper addresses these challenges by focusing on the development of reliable prompts that enhance MedSAM's accuracy. We introduce MedSAM-U, an uncertainty-guided framework designed to automatically refine multi-prompt inputs for more reliable and precise medical image segmentation. Specifically, we first train a Multi-Prompt Adapter integrated with MedSAM, creating MPA-MedSAM, to adapt to diverse multi-prompt inputs. We then employ uncertainty-guided multi-prompt to effectively estimate the uncertainties associated with the prompts and their initial segmentation results. In particular, a novel uncertainty-guided prompts adaptation technique is then applied automatically to derive reliable prompts and their corresponding segmentation outcomes. We validate MedSAM-U using datasets from multiple modalities to train a universal image segmentation model. Compared to MedSAM, experimental results on five distinct modal datasets demonstrate that the proposed MedSAM-U achieves an average performance improvement of 1.7\% to 20.5\% across uncertainty-guided prompts.




Abstract:In computer vision, object detection is an important task that finds its application in many scenarios. However, obtaining extensive labels can be challenging, especially in crowded scenes. Recently, the Segment Anything Model (SAM) has been proposed as a powerful zero-shot segmenter, offering a novel approach to instance segmentation tasks. However, the accuracy and efficiency of SAM and its variants are often compromised when handling objects in crowded and occluded scenes. In this paper, we introduce Crowd-SAM, a SAM-based framework designed to enhance SAM's performance in crowded and occluded scenes with the cost of few learnable parameters and minimal labeled images. We introduce an efficient prompt sampler (EPS) and a part-whole discrimination network (PWD-Net), enhancing mask selection and accuracy in crowded scenes. Despite its simplicity, Crowd-SAM rivals state-of-the-art (SOTA) fully-supervised object detection methods on several benchmarks including CrowdHuman and CityPersons. Our code is available at https://github.com/FelixCaae/CrowdSAM.




Abstract:Low-complexity speech enhancement on mobile phones is crucial in the era of 5G. Thus, focusing on handheld mobile phone communication scenario, based on power level difference (PLD) algorithm and lightweight U-Net, we propose PLD-guided lightweight deep network (PLDNet), an extremely lightweight dual-microphone speech enhancement method that integrates the guidance of signal processing algorithm and lightweight attention-augmented U-Net. For the guidance information, we employ PLD algorithm to pre-process dual-microphone spectrum, and feed the output into subsequent deep neural network, which utilizes a lightweight U-Net with our proposed gated convolution augmented frequency attention (GCAFA) module to extract desired clean speech. Experimental results demonstrate that our proposed method achieves competitive performance with recent top-performing models while reducing computational cost by over 90%, highlighting the potential for low-complexity speech enhancement on mobile phones.




Abstract:Recent progress has shown great potential of visual prompt tuning (VPT) when adapting pre-trained vision transformers to various downstream tasks. However, most existing solutions independently optimize prompts at each layer, thereby neglecting the usage of task-relevant information encoded in prompt tokens across layers. Additionally, existing prompt structures are prone to interference from task-irrelevant noise in input images, which can do harm to the sharing of task-relevant information. In this paper, we propose a novel VPT approach, \textbf{iVPT}. It innovatively incorporates a cross-layer dynamic connection (CDC) for input prompt tokens from adjacent layers, enabling effective sharing of task-relevant information. Furthermore, we design a dynamic aggregation (DA) module that facilitates selective sharing of information between layers. The combination of CDC and DA enhances the flexibility of the attention process within the VPT framework. Building upon these foundations, iVPT introduces an attentive reinforcement (AR) mechanism, by automatically identifying salient image tokens, which are further enhanced by prompt tokens in an additive manner. Extensive experiments on 24 image classification and semantic segmentation benchmarks clearly demonstrate the advantage of the proposed iVPT, compared to the state-of-the-art counterparts.




Abstract:In this paper, we put forward a neural network framework to solve the nonlinear hyperbolic systems. This framework, named relaxation neural networks(RelaxNN), is a simple and scalable extension of physics-informed neural networks(PINN). It is shown later that a typical PINN framework struggles to handle shock waves that arise in hyperbolic systems' solutions. This ultimately results in the failure of optimization that is based on gradient descent in the training process. Relaxation systems provide a smooth asymptotic to the discontinuity solution, under the expectation that macroscopic problems can be solved from a microscopic perspective. Based on relaxation systems, the RelaxNN framework alleviates the conflict of losses in the training process of the PINN framework. In addition to the remarkable results demonstrated in numerical simulations, most of the acceleration techniques and improvement strategies aimed at the standard PINN framework can also be applied to the RelaxNN framework.




Abstract:The visual models pretrained on large-scale benchmarks encode general knowledge and prove effective in building more powerful representations for downstream tasks. Most existing approaches follow the fine-tuning paradigm, either by initializing or regularizing the downstream model based on the pretrained one. The former fails to retain the knowledge in the successive fine-tuning phase, thereby prone to be over-fitting, and the latter imposes strong constraints to the weights or feature maps of the downstream model without considering semantic drift, often incurring insufficient optimization. To deal with these issues, we propose a novel fine-tuning framework, namely distribution regularization with semantic calibration (DR-Tune). It employs distribution regularization by enforcing the downstream task head to decrease its classification error on the pretrained feature distribution, which prevents it from over-fitting while enabling sufficient training of downstream encoders. Furthermore, to alleviate the interference by semantic drift, we develop the semantic calibration (SC) module to align the global shape and class centers of the pretrained and downstream feature distributions. Extensive experiments on widely used image classification datasets show that DR-Tune consistently improves the performance when combing with various backbones under different pretraining strategies. Code is available at: https://github.com/weeknan/DR-Tune.