Abstract:This paper aims to develop an accurate 3D geometry representation of satellite images using satellite-ground image pairs. Our focus is on the challenging problem of generating ground-view panoramas from satellite images. We draw inspiration from the density field representation used in volumetric neural rendering and propose a new approach, called Sat2Density. Our method utilizes the properties of ground-view panoramas for the sky and non-sky regions to learn faithful density fields of 3D scenes in a geometric perspective. Unlike other methods that require extra 3D information during training, our Sat2Density can automatically learn the accurate and faithful 3D geometry via density representation from 2D-only supervision. This advancement significantly improves the ground-view panorama synthesis task. Additionally, our study provides a new geometric perspective to understand the relationship between satellite and ground-view images in 3D space.
Abstract:This paper studies the challenging two-view 3D reconstruction in a rigorous sparse-view configuration, which is suffering from insufficient correspondences in the input image pairs for camera pose estimation. We present a novel Neural One-PlanE RANSAC framework (termed NOPE-SAC in short) that exerts excellent capability to learn one-plane pose hypotheses from 3D plane correspondences. Building on the top of a siamese plane detection network, our NOPE-SAC first generates putative plane correspondences with a coarse initial pose. It then feeds the learned 3D plane parameters of correspondences into shared MLPs to estimate the one-plane camera pose hypotheses, which are subsequently reweighed in a RANSAC manner to obtain the final camera pose. Because the neural one-plane pose minimizes the number of plane correspondences for adaptive pose hypotheses generation, it enables stable pose voting and reliable pose refinement in a few plane correspondences for the sparse-view inputs. In the experiments, we demonstrate that our NOPE-SAC significantly improves the camera pose estimation for the two-view inputs with severe viewpoint changes, setting several new state-of-the-art performances on two challenging benchmarks, i.e., MatterPort3D and ScanNet, for sparse-view 3D reconstruction. The source code is released at https://github.com/IceTTTb/NopeSAC for reproducible research.
Abstract:This paper presents a neural incremental Structure-from-Motion (SfM) approach, Level-S$^2$fM. In our formulation, we aim at simultaneously learning coordinate MLPs for the implicit surfaces and the radiance fields, and estimating the camera poses and scene geometry, which is mainly sourced from the established keypoint correspondences by SIFT. Our formulation would face some new challenges due to inevitable two-view and few-view configurations at the beginning of incremental SfM pipeline for the optimization of coordinate MLPs, but we found that the strong inductive biases conveying in the 2D correspondences are feasible and promising to avoid those challenges by exploiting the relationship between the ray sampling schemes used in volumetric rendering and the sphere tracing of finding the zero-level set of implicit surfaces. Based on this, we revisit the pipeline of incremental SfM and renew the key components of two-view geometry initialization, the camera pose registration, and the 3D points triangulation, as well as the Bundle Adjustment in a novel perspective of neural implicit surfaces. Because the coordinate MLPs unified the scene geometry in small MLP networks, our Level-S$^2$fM treats the zero-level set of the implicit surface as an informative top-down regularization to manage the reconstructed 3D points, reject the outlier of correspondences by querying SDF, adjust the estimated geometries by NBA (Neural BA), finally yielding promising results of 3D reconstruction. Furthermore, our Level-S$^2$fM alleviated the requirement of camera poses for neural 3D reconstruction.
Abstract:This paper presents Holistically-Attracted Wireframe Parsing (HAWP) for 2D images using both fully supervised and self-supervised learning paradigms. At the core is a parsimonious representation that encodes a line segment using a closed-form 4D geometric vector, which enables lifting line segments in wireframe to an end-to-end trainable holistic attraction field that has built-in geometry-awareness, context-awareness and robustness. The proposed HAWP consists of three components: generating line segment and end-point proposal, binding line segment and end-point, and end-point-decoupled lines-of-interest verification. For self-supervised learning, a simulation-to-reality pipeline is exploited in which a HAWP is first trained using synthetic data and then used to ``annotate" wireframes in real images with Homographic Adaptation. With the self-supervised annotations, a HAWP model for real images is trained from scratch. In experiments, the proposed HAWP achieves state-of-the-art performance in both the Wireframe dataset and the YorkUrban dataset in fully-supervised learning. It also demonstrates a significantly better repeatability score than prior arts with much more efficient training in self-supervised learning. Furthermore, the self-supervised HAWP shows great potential for general wireframe parsing without onerous wireframe labels.
Abstract:This paper studies the problem of holistic 3D wireframe perception (HoW-3D), a new task of perceiving both the visible 3D wireframes and the invisible ones from single-view 2D images. As the non-front surfaces of an object cannot be directly observed in a single view, estimating the non-line-of-sight (NLOS) geometries in HoW-3D is a fundamentally challenging problem and remains open in computer vision. We study the problem of HoW-3D by proposing an ABC-HoW benchmark, which is created on top of CAD models sourced from the ABC-dataset with 12k single-view images and the corresponding holistic 3D wireframe models. With our large-scale ABC-HoW benchmark available, we present a novel Deep Spatial Gestalt (DSG) model to learn the visible junctions and line segments as the basis and then infer the NLOS 3D structures from the visible cues by following the Gestalt principles of human vision systems. In our experiments, we demonstrate that our DSG model performs very well in inferring the holistic 3D wireframes from single-view images. Compared with the strong baseline methods, our DSG model outperforms the previous wireframe detectors in detecting the invisible line geometry in single-view images and is even very competitive with prior arts that take high-fidelity PointCloud as inputs on reconstructing 3D wireframes.
Abstract:This paper studies the problem of polygonal mapping of buildings by tackling the issue of mask reversibility that leads to a notable performance gap between the predicted masks and polygons from the learning-based methods. We addressed such an issue by exploiting the hierarchical supervision (of bottom-level vertices, mid-level line segments and the high-level regional masks) and proposed a novel interaction mechanism of feature embedding sourced from different levels of supervision signals to obtain reversible building masks for polygonal mapping of buildings. As a result, we show that the learned reversible building masks take all the merits of the advances of deep convolutional neural networks for high-performing polygonal mapping of buildings. In the experiments, we evaluated our method on the two public benchmarks of AICrowd and Inria. On the AICrowd dataset, our proposed method obtains unanimous improvements on the metrics of AP, APboundary and PoLiS. For the Inria dataset, our proposed method also obtains very competitive results on the metrics of IoU and Accuracy. The models and source code are available at https://github.com/SarahwXU.
Abstract:This paper addresses the problem of document image dewarping, which aims at eliminating the geometric distortion in document images for document digitization. Instead of designing a better neural network to approximate the optical flow fields between the inputs and outputs, we pursue the best readability by taking the text lines and the document boundaries into account from a constrained optimization perspective. Specifically, our proposed method first learns the boundary points and the pixels in the text lines and then follows the most simple observation that the boundaries and text lines in both horizontal and vertical directions should be kept after dewarping to introduce a novel grid regularization scheme. To obtain the final forward mapping for dewarping, we solve an optimization problem with our proposed grid regularization. The experiments comprehensively demonstrate that our proposed approach outperforms the prior arts by large margins in terms of readability (with the metrics of Character Errors Rate and the Edit Distance) while maintaining the best image quality on the publicly-available DocUNet benchmark.
Abstract:Given two point sets, the problem of registration is to recover a transformation that matches one set to the other. This task is challenging due to the presence of the large number of outliers, the unknown non-rigid deformations and the large sizes of point sets. To obtain strong robustness against outliers, we formulate the registration problem as a partial distribution matching (PDM) problem, where the goal is to partially match the distributions represented by point sets in a metric space. To handle large point sets, we propose a scalable PDM algorithm by utilizing the efficient partial Wasserstein-1 (PW) discrepancy. Specifically, we derive the Kantorovich-Rubinstein duality for the PW discrepancy, and show its gradient can be explicitly computed. Based on these results, we propose a partial Wasserstein adversarial network (PWAN), which is able to approximate the PW discrepancy by a neural network, and minimize it by gradient descent. In addition, it also incorporates an efficient coherence regularizer for non-rigid transformations to avoid unrealistic deformations. We evaluate PWAN on practical point set registration tasks, and show that the proposed PWAN is robust, scalable and performs more favorably than the state-of-the-art methods.
Abstract:Zero-shot semantic segmentation (ZS3) aims to segment the novel categories that have not been seen in the training. Existing works formulate ZS3 as a pixel-level zero-shot classification problem, and transfer semantic knowledge from seen classes to unseen ones with the help of language models pre-trained only with texts. While simple, the pixel-level ZS3 formulation shows the limited capability to integrate vision-language models that are often pre-trained with image-text pairs and currently demonstrate great potential for vision tasks. Inspired by the observation that humans often perform segment-level semantic labeling, we propose to decouple the ZS3 into two sub-tasks: 1) a class-agnostic grouping task to group the pixels into segments. 2) a zero-shot classification task on segments. The former sub-task does not involve category information and can be directly transferred to group pixels for unseen classes. The latter subtask performs at segment-level and provides a natural way to leverage large-scale vision-language models pre-trained with image-text pairs (e.g. CLIP) for ZS3. Based on the decoupling formulation, we propose a simple and effective zero-shot semantic segmentation model, called ZegFormer, which outperforms the previous methods on ZS3 standard benchmarks by large margins, e.g., 35 points on the PASCAL VOC and 3 points on the COCO-Stuff in terms of mIoU for unseen classes. Code will be released at https://github.com/dingjiansw101/ZegFormer.
Abstract:Monocular 3D object detection aims to localize 3D bounding boxes in an input single 2D image. It is a highly challenging problem and remains open, especially when no extra information (e.g., depth, lidar and/or multi-frames) can be leveraged in training and/or inference. This paper proposes a simple yet effective formulation for monocular 3D object detection without exploiting any extra information. It presents the MonoCon method which learns Monocular Contexts, as auxiliary tasks in training, to help monocular 3D object detection. The key idea is that with the annotated 3D bounding boxes of objects in an image, there is a rich set of well-posed projected 2D supervision signals available in training, such as the projected corner keypoints and their associated offset vectors with respect to the center of 2D bounding box, which should be exploited as auxiliary tasks in training. The proposed MonoCon is motivated by the Cramer-Wold theorem in measure theory at a high level. In implementation, it utilizes a very simple end-to-end design to justify the effectiveness of learning auxiliary monocular contexts, which consists of three components: a Deep Neural Network (DNN) based feature backbone, a number of regression head branches for learning the essential parameters used in the 3D bounding box prediction, and a number of regression head branches for learning auxiliary contexts. After training, the auxiliary context regression branches are discarded for better inference efficiency. In experiments, the proposed MonoCon is tested in the KITTI benchmark (car, pedestrain and cyclist). It outperforms all prior arts in the leaderboard on car category and obtains comparable performance on pedestrian and cyclist in terms of accuracy. Thanks to the simple design, the proposed MonoCon method obtains the fastest inference speed with 38.7 fps in comparisons