Abstract:Neural network models are capable of generating extremely natural sounding conversational interactions. Nevertheless, these models have yet to demonstrate that they can incorporate content in the form of factual information or entity-grounded opinion that would enable them to serve in more task-oriented conversational applications. This paper presents a novel, fully data-driven, and knowledge-grounded neural conversation model aimed at producing more contentful responses without slot filling. We generalize the widely-used Seq2Seq approach by conditioning responses on both conversation history and external "facts", allowing the model to be versatile and applicable in an open-domain setting. Our approach yields significant improvements over a competitive Seq2Seq baseline. Human judges found that our outputs are significantly more informative.
Abstract:Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity (non-repetitive turns), coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues.
Abstract:Sequence-to-sequence neural network models for generation of conversational responses tend to generate safe, commonplace responses (e.g., "I don't know") regardless of the input. We suggest that the traditional objective function, i.e., the likelihood of output (response) given input (message) is unsuited to response generation tasks. Instead we propose using Maximum Mutual Information (MMI) as the objective function in neural models. Experimental results demonstrate that the proposed MMI models produce more diverse, interesting, and appropriate responses, yielding substantive gains in BLEU scores on two conversational datasets and in human evaluations.
Abstract:We present persona-based models for handling the issue of speaker consistency in neural response generation. A speaker model encodes personas in distributed embeddings that capture individual characteristics such as background information and speaking style. A dyadic speaker-addressee model captures properties of interactions between two interlocutors. Our models yield qualitative performance improvements in both perplexity and BLEU scores over baseline sequence-to-sequence models, with similar gains in speaker consistency as measured by human judges.
Abstract:We introduce the first dataset for sequential vision-to-language, and explore how this data may be used for the task of visual storytelling. The first release of this dataset, SIND v.1, includes 81,743 unique photos in 20,211 sequences, aligned to both descriptive (caption) and story language. We establish several strong baselines for the storytelling task, and motivate an automatic metric to benchmark progress. Modelling concrete description as well as figurative and social language, as provided in this dataset and the storytelling task, has the potential to move artificial intelligence from basic understandings of typical visual scenes towards more and more human-like understanding of grounded event structure and subjective expression.
Abstract:Integrating vision and language has long been a dream in work on artificial intelligence (AI). In the past two years, we have witnessed an explosion of work that brings together vision and language from images to videos and beyond. The available corpora have played a crucial role in advancing this area of research. In this paper, we propose a set of quality metrics for evaluating and analyzing the vision & language datasets and categorize them accordingly. Our analyses show that the most recent datasets have been using more complex language and more abstract concepts, however, there are different strengths and weaknesses in each.
Abstract:We introduce Discriminative BLEU (deltaBLEU), a novel metric for intrinsic evaluation of generated text in tasks that admit a diverse range of possible outputs. Reference strings are scored for quality by human raters on a scale of [-1, +1] to weight multi-reference BLEU. In tasks involving generation of conversational responses, deltaBLEU correlates reasonably with human judgments and outperforms sentence-level and IBM BLEU in terms of both Spearman's rho and Kendall's tau.
Abstract:We present a novel response generation system that can be trained end to end on large quantities of unstructured Twitter conversations. A neural network architecture is used to address sparsity issues that arise when integrating contextual information into classic statistical models, allowing the system to take into account previous dialog utterances. Our dynamic-context generative models show consistent gains over both context-sensitive and non-context-sensitive Machine Translation and Information Retrieval baselines.