Abstract:Out-of-distribution (OOD) detection is a critical task in machine learning, particularly for safety-critical applications where unexpected inputs must be reliably flagged. While hierarchical variational autoencoders (HVAEs) offer improved representational capacity over traditional VAEs, their performance is highly sensitive to how latent dimensions are distributed across layers. Existing approaches often allocate latent capacity arbitrarily, leading to ineffective representations or posterior collapse. In this work, we introduce a theoretically grounded framework for optimizing latent dimension allocation in HVAEs, drawing on principles from information theory to formalize the trade-off between information loss and representational attenuation. We prove the existence of an optimal allocation ratio $r^{\ast}$ under a fixed latent budget, and empirically show that tuning this ratio consistently improves OOD detection performance across datasets and architectures. Our approach outperforms baseline HVAE configurations and provides practical guidance for principled latent structure design, leading to more robust OOD detection with deep generative models.
Abstract:Saliency methods are widely used to visualize which input features are deemed relevant to a model's prediction. However, their visual plausibility can obscure critical limitations. In this work, we propose a diagnostic test for class sensitivity: a method's ability to distinguish between competing class labels on the same input. Through extensive experiments, we show that many widely used saliency methods produce nearly identical explanations regardless of the class label, calling into question their reliability. We find that class-insensitive behavior persists across architectures and datasets, suggesting the failure mode is structural rather than model-specific. Motivated by these findings, we introduce CASE, a contrastive explanation method that isolates features uniquely discriminative for the predicted class. We evaluate CASE using the proposed diagnostic and a perturbation-based fidelity test, and show that it produces faithful and more class-specific explanations than existing methods.
Abstract:We introduce IrrMap, the first large-scale dataset (1.1 million patches) for irrigation method mapping across regions. IrrMap consists of multi-resolution satellite imagery from LandSat and Sentinel, along with key auxiliary data such as crop type, land use, and vegetation indices. The dataset spans 1,687,899 farms and 14,117,330 acres across multiple western U.S. states from 2013 to 2023, providing a rich and diverse foundation for irrigation analysis and ensuring geospatial alignment and quality control. The dataset is ML-ready, with standardized 224x224 GeoTIFF patches, the multiple input modalities, carefully chosen train-test-split data, and accompanying dataloaders for seamless deep learning model training andbenchmarking in irrigation mapping. The dataset is also accompanied by a complete pipeline for dataset generation, enabling researchers to extend IrrMap to new regions for irrigation data collection or adapt it with minimal effort for other similar applications in agricultural and geospatial analysis. We also analyze the irrigation method distribution across crop groups, spatial irrigation patterns (using Shannon diversity indices), and irrigated area variations for both LandSat and Sentinel, providing insights into regional and resolution-based differences. To promote further exploration, we openly release IrrMap, along with the derived datasets, benchmark models, and pipeline code, through a GitHub repository: https://github.com/Nibir088/IrrMap and Data repository: https://huggingface.co/Nibir/IrrMap, providing comprehensive documentation and implementation details.
Abstract:Prior works have shown that in-context learning is brittle to presentation factors such as the order, number, and choice of selected examples. However, ablation-based guidance on selecting the number of examples may ignore the interplay between different presentation factors. In this work we develop a Monte Carlo sampling-based method to study the impact of number of examples while explicitly accounting for effects from order and selected examples. We find that previous guidance on how many in-context examples to select does not always generalize across different sets of selected examples and orderings, and whether one-shot settings outperform zero-shot settings is highly dependent on the selected example. Additionally, inspired by data valuation, we apply our sampling method to in-context example selection to select examples that perform well across different orderings. We find a negative result, that while performance is robust to ordering and number of examples, there is an unexpected performance degradation compared to random sampling.
Abstract:Large language models (LLMs) are known to perpetuate stereotypes and exhibit biases. Various strategies have been proposed to mitigate potential harms that may result from these biases, but most work studies biases in LLMs as a black-box problem without considering how concepts are represented within the model. We adapt techniques from representation engineering to study how the concept of "gender" is represented within LLMs. We introduce a new method that extracts concept representations via probability weighting without labeled data and efficiently selects a steering vector for measuring and manipulating the model's representation. We also present a projection-based method that enables precise steering of model predictions and demonstrate its effectiveness in mitigating gender bias in LLMs.
Abstract:Large language models have demonstrated strong capabilities to learn in-context, where exemplar input-output pairings are appended to the prompt for demonstration. However, existing work has demonstrated the ability of models to learn lexical and label biases in-context, which negatively impacts both performance and robustness of models. The impact of other statistical data biases remains under-explored, which this work aims to address. We specifically investigate the impact of length biases on in-context learning. We demonstrate that models do learn length biases in the context window for their predictions, and further empirically analyze the factors that modulate the level of bias exhibited by the model. In addition, we show that learning length information in-context can be used to counter the length bias that has been encoded in models (e.g., via fine-tuning). This reveals the power of in-context learning in debiasing model prediction behaviors without the need for costly parameter updates.
Abstract:To deploy LLMs on resource-contained platforms such as mobile robotics and wearables, non-transformers LLMs have achieved major breakthroughs. Recently, a novel RNN-based LLM family, Repentance Weighted Key Value (RWKV) models have shown promising results in text generation on resource-constrained devices thanks to their computational efficiency. However, these models remain too large to be deployed on embedded devices due to their high parameter count. In this paper, we propose an efficient suite of compression techniques, tailored to the RWKV architecture. These techniques include low-rank approximation, sparsity predictors, and clustering head, designed to align with the model size. Our methods compress the RWKV models by 4.95--3.8x with only 2.95pp loss in accuracy.
Abstract:The performance of Large Language Models (LLMs) on natural language tasks can be improved through both supervised fine-tuning (SFT) and in-context learning (ICL), which operate via distinct mechanisms. Supervised fine-tuning updates the model's weights by minimizing loss on training data, whereas in-context learning leverages task demonstrations embedded in the prompt, without changing the model's parameters. This study investigates the effects of these learning paradigms on the hidden representations of LLMs using Intrinsic Dimension (ID). We use ID to estimate the number of degrees of freedom between representations extracted from LLMs as they perform specific natural language tasks. We first explore how the ID of LLM representations evolves during SFT and how it varies due to the number of demonstrations in ICL. We then compare the IDs induced by SFT and ICL and find that ICL consistently induces a higher ID compared to SFT, suggesting that representations generated during ICL reside in higher dimensional manifolds in the embedding space.
Abstract:Preserving topological structures is important in real-world applications, particularly in sensitive domains such as healthcare and medicine, where the correctness of human anatomy is critical. However, most existing image editing models focus on manipulating intensity and texture features, often overlooking object geometry within images. To address this issue, this paper introduces a novel method, Topology-Preserved Image Editing with text instructions (TPIE), that for the first time ensures the topology and geometry remaining intact in edited images through text-guided generative diffusion models. More specifically, our method treats newly generated samples as deformable variations of a given input template, allowing for controllable and structure-preserving edits. Our proposed TPIE framework consists of two key modules: (i) an autoencoder-based registration network that learns latent representations of object transformations, parameterized by velocity fields, from pairwise training images; and (ii) a novel latent conditional geometric diffusion (LCDG) model efficiently capturing the data distribution of learned transformation features conditioned on custom-defined text instructions. We validate TPIE on a diverse set of 2D and 3D images and compare them with state-of-the-art image editing approaches. Experimental results show that our method outperforms other baselines in generating more realistic images with well-preserved topology. Our code will be made publicly available on Github.
Abstract:Differential privacy (DP) is applied when fine-tuning pre-trained large language models (LLMs) to limit leakage of training examples. While most DP research has focused on improving a model's privacy-utility tradeoff, some find that DP can be unfair to or biased against underrepresented groups. In this work, we show the impact of DP on bias in LLMs through empirical analysis. Differentially private training can increase the model bias against protected groups w.r.t AUC-based bias metrics. DP makes it more difficult for the model to differentiate between the positive and negative examples from the protected groups and other groups in the rest of the population. Our results also show that the impact of DP on bias is not only affected by the privacy protection level but also the underlying distribution of the dataset.