Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Matthew Hoffman

Launchpad: A Programming Model for Distributed Machine Learning Research

Jun 07, 2021
Fan Yang, Gabriel Barth-Maron, Piotr Stańczyk, Matthew Hoffman, Siqi Liu, Manuel Kroiss, Aedan Pope, Alban Rrustemi

  Access Paper or Ask Questions

Regularized Behavior Value Estimation

Mar 17, 2021
Caglar Gulcehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, Nando de Freitas

  Access Paper or Ask Questions

NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport

Mar 09, 2019
Matthew Hoffman, Pavel Sountsov, Joshua V. Dillon, Ian Langmore, Dustin Tran, Srinivas Vasudevan

  Access Paper or Ask Questions

Simple, Distributed, and Accelerated Probabilistic Programming

Nov 29, 2018
Dustin Tran, Matthew Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul, Matthew Johnson, Rif A. Saurous

* Appears in Neural Information Processing Systems, 2018. Code available at 

  Access Paper or Ask Questions

Aerial Spectral Super-Resolution using Conditional Adversarial Networks

Dec 23, 2017
Aneesh Rangnekar, Nilay Mokashi, Emmett Ientilucci, Christopher Kanan, Matthew Hoffman

  Access Paper or Ask Questions

Latent Constraints: Learning to Generate Conditionally from Unconditional Generative Models

Dec 21, 2017
Jesse Engel, Matthew Hoffman, Adam Roberts

  Access Paper or Ask Questions

On the challenges of learning with inference networks on sparse, high-dimensional data

Oct 17, 2017
Rahul G. Krishnan, Dawen Liang, Matthew Hoffman

* 14 pages, 3 tables, 11 figures 

  Access Paper or Ask Questions

The Segmented iHMM: A Simple, Efficient Hierarchical Infinite HMM

Feb 20, 2016
Ardavan Saeedi, Matthew Hoffman, Matthew Johnson, Ryan Adams

  Access Paper or Ask Questions

Learning Activation Functions to Improve Deep Neural Networks

Apr 21, 2015
Forest Agostinelli, Matthew Hoffman, Peter Sadowski, Pierre Baldi

* Accepted as a workshop paper contribution at the International Conference on Learning Representations (ICLR) 2015 

  Access Paper or Ask Questions