Abstract:Characterizing a large language model's (LLM's) knowledge of a given question is challenging. As a result, prior work has primarily examined LLM behavior under knowledge conflicts, where the model's internal parametric memory contradicts information in the external context. However, this does not fully reflect how well the model knows the answer to the question. In this paper, we first introduce a taxonomy of five knowledge statuses based on the consistency and correctness of LLM knowledge modes. We then propose KScope, a hierarchical framework of statistical tests that progressively refines hypotheses about knowledge modes and characterizes LLM knowledge into one of these five statuses. We apply KScope to nine LLMs across four datasets and systematically establish: (1) Supporting context narrows knowledge gaps across models. (2) Context features related to difficulty, relevance, and familiarity drive successful knowledge updates. (3) LLMs exhibit similar feature preferences when partially correct or conflicted, but diverge sharply when consistently wrong. (4) Context summarization constrained by our feature analysis, together with enhanced credibility, further improves update effectiveness and generalizes across LLMs.
Abstract:Knowledge editing methods like MEMIT are able to make data and compute efficient updates of factual knowledge by using a single sentence to update facts and their consequences. However, what is often overlooked is a "precomputation step", which requires a one-time but significant computational cost. The authors of MEMIT originally precompute approximately 44 million hidden vectors per edited layer, which requires a forward pass over 44 million tokens. For GPT-J (6B), this precomputation step takes 36 hours on a single GPU, while it takes approximately 40 hours for Llama2-7B. Additionally, this precomputation time grows with model size. In this paper, we show that this excessive computational cost is unnecessary. Knowledge editing using MEMIT and related methods, such as ROME and EMMET, can be performed by pre-computing a very small portion of the 44 million hidden vectors. We first present the theoretical minimum number of hidden vector precomputation required for solutions of these editing methods to exist. We then empirically show that knowledge editing using these methods can be done by pre-computing significantly fewer hidden vectors. Specifically, we show that the precomputation step can be done with less than 0.3% of the originally stipulated number of hidden vectors. This saves a significant amount of precomputation time and allows users to begin editing new models within a few minutes.
Abstract:Large language models (LLMs) have revolutionized natural language processing, yet their practical utility is often limited by persistent issues of hallucinations and outdated parametric knowledge. Although post-training model editing offers a pathway for dynamic updates, existing methods frequently suffer from overfitting and catastrophic forgetting. To tackle these challenges, we propose a novel framework that leverages hyperbolic geometry and graph neural networks for precise and stable model edits. We introduce HYPE (HYperbolic Parameter Editing), which comprises three key components: (i) Hyperbolic Graph Construction, which uses Poincar\'e embeddings to represent knowledge triples in hyperbolic space, preserving hierarchical relationships and preventing unintended side effects by ensuring that edits to parent concepts do not inadvertently affect child concepts; (ii) M\"obius-Transformed Updates, which apply hyperbolic addition to propagate edits while maintaining structural consistency within the hyperbolic manifold, unlike conventional Euclidean updates that distort relational distances; and (iii) Dual Stabilization, which combines gradient masking and periodic GNN parameter resetting to prevent catastrophic forgetting by focusing updates on critical parameters and preserving long-term knowledge. Experiments on CounterFact, CounterFact+, and MQuAKE with GPT-J and GPT2-XL demonstrate that HYPE significantly enhances edit stability, factual accuracy, and multi-hop reasoning.
Abstract:As large language models (LLMs) become increasingly prevalent in global applications, ensuring that they are toxicity-free across diverse linguistic contexts remains a critical challenge. We explore "Cross-lingual Detoxification", a cross-lingual paradigm that mitigates toxicity, enabling detoxification capabilities to transfer between high and low-resource languages across different script families. We analyze cross-lingual detoxification's effectiveness through 504 extensive settings to evaluate toxicity reduction in cross-distribution settings with limited data and investigate how mitigation impacts model performance on non-toxic tasks, revealing trade-offs between safety and knowledge preservation. Our code and dataset are publicly available at https://github.com/himanshubeniwal/Breaking-mBad.
Abstract:While bariatric and metabolic surgery (MBS) is considered the gold standard treatment for severe and morbid obesity, its therapeutic efficacy hinges upon active and longitudinal engagement with multidisciplinary providers, including surgeons, dietitians/nutritionists, psychologists, and endocrinologists. This engagement spans the entire patient journey, from preoperative preparation to long-term postoperative management. However, this process is often hindered by numerous healthcare disparities, such as logistical and access barriers, which impair easy patient access to timely, evidence-based, clinician-endorsed information. To address these gaps, we introduce bRAGgen, a novel adaptive retrieval-augmented generation (RAG)-based model that autonomously integrates real-time medical evidence when response confidence dips below dynamic thresholds. This self-updating architecture ensures that responses remain current and accurate, reducing the risk of misinformation. Additionally, we present bRAGq, a curated dataset of 1,302 bariatric surgery--related questions, validated by an expert bariatric surgeon. bRAGq constitutes the first large-scale, domain-specific benchmark for comprehensive MBS care. In a two-phase evaluation, bRAGgen is benchmarked against state-of-the-art models using both large language model (LLM)--based metrics and expert surgeon review. Across all evaluation dimensions, bRAGgen demonstrates substantially superior performance in generating clinically accurate and relevant responses.
Abstract:Large language models (LLMs) are increasingly envisioned as decision-support tools in clinical practice, yet safe clinical reasoning demands integrating heterogeneous knowledge bases -- trials, primary studies, regulatory documents, and cost data -- under strict accuracy constraints. Existing evaluations often rely on synthetic prompts, reduce the task to single-hop factoid queries, or conflate reasoning with open-ended generation, leaving their real-world utility unclear. To close this gap, we present MedBrowseComp, the first benchmark that systematically tests an agent's ability to reliably retrieve and synthesize multi-hop medical facts from live, domain-specific knowledge bases. MedBrowseComp contains more than 1,000 human-curated questions that mirror clinical scenarios where practitioners must reconcile fragmented or conflicting information to reach an up-to-date conclusion. Applying MedBrowseComp to frontier agentic systems reveals performance shortfalls as low as ten percent, exposing a critical gap between current LLM capabilities and the rigor demanded in clinical settings. MedBrowseComp therefore offers a clear testbed for reliable medical information seeking and sets concrete goals for future model and toolchain upgrades. You can visit our project page at: https://moreirap12.github.io/mbc-browse-app/
Abstract:The combinatorial structure of many real-world action spaces leads to exponential growth in the number of possible actions, limiting the effectiveness of conventional reinforcement learning algorithms. Recent approaches for combinatorial action spaces impose factorized or sequential structures over sub-actions, failing to capture complex joint behavior. We introduce the Sub-Action Interaction Network using Transformers (SAINT), a novel policy architecture that represents multi-component actions as unordered sets and models their dependencies via self-attention conditioned on the global state. SAINT is permutation-invariant, sample-efficient, and compatible with standard policy optimization algorithms. In 15 distinct combinatorial environments across three task domains, including environments with nearly 17 million joint actions, SAINT consistently outperforms strong baselines.
Abstract:Large multi-modal models inevitably decay over time as facts change and previously learned information becomes outdated. Traditional approaches such as fine-tuning are often impractical for updating these models due to their size and complexity. Instead, direct knowledge editing within the models presents a more viable solution. Current model editing techniques, however, typically overlook the unique influence ranges of different facts, leading to compromised model performance in terms of both generality and locality. To address this issue, we introduce the concept of the generality-locality trade-off in multi-modal model editing. We develop a new model editing dataset named OKEDIT, specifically designed to effectively evaluate this trade-off. Building on this foundation, we propose BalancEdit, a novel method for balanced model editing that dynamically achieves an optimal balance between generality and locality. BalancEdit utilizes a unique mechanism that generates both positive and negative samples for each fact to accurately determine its influence scope and incorporates these insights into the model's latent space using a discrete, localized codebook of edits, without modifying the underlying model weights. To our knowledge, this is the first approach explicitly addressing the generality-locality trade-off in multi-modal model editing. Our comprehensive results confirm the effectiveness of BalancEdit, demonstrating minimal trade-offs while maintaining robust editing capabilities. Our code and dataset will be available.
Abstract:Truly multilingual safety moderation efforts for Large Language Models (LLMs) have been hindered by a narrow focus on a small set of languages (e.g., English, Chinese) as well as a limited scope of safety definition, resulting in significant gaps in moderation capabilities. To bridge these gaps, we release POLYGUARD, a new state-of-the-art multilingual safety model for safeguarding LLM generations, and the corresponding training and evaluation datasets. POLYGUARD is trained on POLYGUARDMIX, the largest multilingual safety training corpus to date containing 1.91M samples across 17 languages (e.g., Chinese, Czech, English, Hindi). We also introduce POLYGUARDPROMPTS, a high quality multilingual benchmark with 29K samples for the evaluation of safety guardrails. Created by combining naturally occurring multilingual human-LLM interactions and human-verified machine translations of an English-only safety dataset (WildGuardMix; Han et al., 2024), our datasets contain prompt-output pairs with labels of prompt harmfulness, response harmfulness, and response refusal. Through extensive evaluations across multiple safety and toxicity benchmarks, we demonstrate that POLYGUARD outperforms existing state-of-the-art open-weight and commercial safety classifiers by 5.5%. Our contributions advance efforts toward safer multilingual LLMs for all global users.
Abstract:Constraints are critical in text generation as LLM outputs are often unreliable when it comes to ensuring generated outputs adhere to user defined instruction or general safety guidelines. To address this gap, we present Constrained Discrete Diffusion (CDD), a novel method for enforcing constraints on natural language by integrating discrete diffusion models with differentiable optimization. Unlike conventional text generators, which often rely on post-hoc filtering or model retraining for controllable generation, we propose imposing constraints directly into the discrete diffusion sampling process. We illustrate how this technique can be applied to satisfy a variety of natural language constraints, including (i) toxicity mitigation by preventing harmful content from emerging, (ii) character and sequence level lexical constraints, and (iii) novel molecule sequence generation with specific property adherence. Experimental results show that our constraint-aware procedure achieves high fidelity in meeting these requirements while preserving fluency and semantic coherence, outperforming auto-regressive and existing discrete diffusion approaches.