Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Lottery Pools: Winning More by Interpolating Tickets without Increasing Training or Inference Cost


Aug 23, 2022
Lu Yin, Shiwei Liu, Fang Meng, Tianjin Huang, Vlado Menkovski, Mykola Pechenizkiy


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Superposing Many Tickets into One: A Performance Booster for Sparse Neural Network Training


May 30, 2022
Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, Mykola Pechenizkiy, Decebal Constantin Mocanu, Shiwei Liu

* 17 pages, 5 figures, accepted by the 38th Conference on Uncertainty in Artificial Intelligence (UAI) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Semantic-Based Few-Shot Learning by Interactive Psychometric Testing


Dec 16, 2021
Lu Yin, Vlado Menkovski, Yulong Pei, Mykola Pechenizkiy

* Accepted by AAAI 2022 Workshop on Interactive Machine Learning ([email protected]

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Hierarchical Semantic Segmentation using Psychometric Learning


Jul 07, 2021
Lu Yin, Vlado Menkovski, Shiwei Liu, Mykola Pechenizkiy

* 17 pages, 12 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Sparse Training via Boosting Pruning Plasticity with Neuroregeneration


Jun 19, 2021
Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pechenizkiy, Zhangyang Wang, Decebal Constantin Mocanu


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Linear-Time Self Attention with Codeword Histogram for Efficient Recommendation


May 28, 2021
Yongji Wu, Defu Lian, Neil Zhenqiang Gong, Lu Yin, Mingyang Yin, Jingren Zhou, Hongxia Yang

* 11 pages. Accepted by the Web Conference 2021 (WWW '21) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Rethinking Lifelong Sequential Recommendation with Incremental Multi-Interest Attention


May 28, 2021
Yongji Wu, Lu Yin, Defu Lian, Mingyang Yin, Neil Zhenqiang Gong, Jingren Zhou, Hongxia Yang

* 11 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Do We Actually Need Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training


Feb 13, 2021
Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, Mykola Pechenizkiy

* 15 pages, 9 figures, preprint version 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Knowledge Elicitation using Deep Metric Learning and Psychometric Testing


Apr 14, 2020
Lu Yin, Vlado Menkovski, Mykola Pechenizkiy

* 16 pages, 11 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>