Alert button
Picture for Loic Le Folgoc

Loic Le Folgoc

Alert button

Is MC Dropout Bayesian?

Add code
Bookmark button
Alert button
Oct 08, 2021
Loic Le Folgoc, Vasileios Baltatzis, Sujal Desai, Anand Devaraj, Sam Ellis, Octavio E. Martinez Manzanera, Arjun Nair, Huaqi Qiu, Julia Schnabel, Ben Glocker

Figure 1 for Is MC Dropout Bayesian?
Figure 2 for Is MC Dropout Bayesian?
Figure 3 for Is MC Dropout Bayesian?
Figure 4 for Is MC Dropout Bayesian?
Viaarxiv icon

The Pitfalls of Sample Selection: A Case Study on Lung Nodule Classification

Add code
Bookmark button
Alert button
Aug 11, 2021
Vasileios Baltatzis, Kyriaki-Margarita Bintsi, Loic Le Folgoc, Octavio E. Martinez Manzanera, Sam Ellis, Arjun Nair, Sujal Desai, Ben Glocker, Julia A. Schnabel

Figure 1 for The Pitfalls of Sample Selection: A Case Study on Lung Nodule Classification
Figure 2 for The Pitfalls of Sample Selection: A Case Study on Lung Nodule Classification
Figure 3 for The Pitfalls of Sample Selection: A Case Study on Lung Nodule Classification
Figure 4 for The Pitfalls of Sample Selection: A Case Study on Lung Nodule Classification
Viaarxiv icon

The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data

Add code
Bookmark button
Alert button
Aug 10, 2021
Vasileios Baltatzis, Loic Le Folgoc, Sam Ellis, Octavio E. Martinez Manzanera, Kyriaki-Margarita Bintsi, Arjun Nair, Sujal Desai, Ben Glocker, Julia A. Schnabel

Figure 1 for The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data
Figure 2 for The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data
Figure 3 for The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data
Figure 4 for The Effect of the Loss on Generalization: Empirical Study on Synthetic Lung Nodule Data
Viaarxiv icon

Bayesian analysis of the prevalence bias: learning and predicting from imbalanced data

Add code
Bookmark button
Alert button
Jul 31, 2021
Loic Le Folgoc, Vasileios Baltatzis, Amir Alansary, Sujal Desai, Anand Devaraj, Sam Ellis, Octavio E. Martinez Manzanera, Fahdi Kanavati, Arjun Nair, Julia Schnabel, Ben Glocker

Figure 1 for Bayesian analysis of the prevalence bias: learning and predicting from imbalanced data
Figure 2 for Bayesian analysis of the prevalence bias: learning and predicting from imbalanced data
Figure 3 for Bayesian analysis of the prevalence bias: learning and predicting from imbalanced data
Figure 4 for Bayesian analysis of the prevalence bias: learning and predicting from imbalanced data
Viaarxiv icon

Geometric Deep Learning for Post-Menstrual Age Prediction based on the Neonatal White Matter Cortical Surface

Add code
Bookmark button
Alert button
Aug 13, 2020
Vitalis Vosylius, Andy Wang, Cemlyn Waters, Alexey Zakharov, Francis Ward, Loic Le Folgoc, John Cupitt, Antonios Makropoulos, Andreas Schuh, Daniel Rueckert, Amir Alansary

Figure 1 for Geometric Deep Learning for Post-Menstrual Age Prediction based on the Neonatal White Matter Cortical Surface
Figure 2 for Geometric Deep Learning for Post-Menstrual Age Prediction based on the Neonatal White Matter Cortical Surface
Figure 3 for Geometric Deep Learning for Post-Menstrual Age Prediction based on the Neonatal White Matter Cortical Surface
Figure 4 for Geometric Deep Learning for Post-Menstrual Age Prediction based on the Neonatal White Matter Cortical Surface
Viaarxiv icon

Explainable Shape Analysis through Deep Hierarchical Generative Models: Application to Cardiac Remodeling

Add code
Bookmark button
Alert button
Jun 28, 2019
Carlo Biffi, Juan J. Cerrolaza, Giacomo Tarroni, Wenjia Bai, Ozan Oktay, Loic Le Folgoc, Konstantinos Kamnitsas, Antonio de Marvao, Georgia Doumou, Jinming Duan, Sanjay K. Prasad, Stuart A. Cook, Declan P. O'Regan, Daniel Rueckert

Figure 1 for Explainable Shape Analysis through Deep Hierarchical Generative Models: Application to Cardiac Remodeling
Figure 2 for Explainable Shape Analysis through Deep Hierarchical Generative Models: Application to Cardiac Remodeling
Figure 3 for Explainable Shape Analysis through Deep Hierarchical Generative Models: Application to Cardiac Remodeling
Figure 4 for Explainable Shape Analysis through Deep Hierarchical Generative Models: Application to Cardiac Remodeling
Viaarxiv icon

Semi-Supervised Learning via Compact Latent Space Clustering

Add code
Bookmark button
Alert button
Jul 29, 2018
Konstantinos Kamnitsas, Daniel C. Castro, Loic Le Folgoc, Ian Walker, Ryutaro Tanno, Daniel Rueckert, Ben Glocker, Antonio Criminisi, Aditya Nori

Figure 1 for Semi-Supervised Learning via Compact Latent Space Clustering
Figure 2 for Semi-Supervised Learning via Compact Latent Space Clustering
Figure 3 for Semi-Supervised Learning via Compact Latent Space Clustering
Figure 4 for Semi-Supervised Learning via Compact Latent Space Clustering
Viaarxiv icon

Automatic View Planning with Multi-scale Deep Reinforcement Learning Agents

Add code
Bookmark button
Alert button
Jun 08, 2018
Amir Alansary, Loic Le Folgoc, Ghislain Vaillant, Ozan Oktay, Yuanwei Li, Wenjia Bai, Jonathan Passerat-Palmbach, Ricardo Guerrero, Konstantinos Kamnitsas, Benjamin Hou, Steven McDonagh, Ben Glocker, Bernhard Kainz, Daniel Rueckert

Figure 1 for Automatic View Planning with Multi-scale Deep Reinforcement Learning Agents
Figure 2 for Automatic View Planning with Multi-scale Deep Reinforcement Learning Agents
Figure 3 for Automatic View Planning with Multi-scale Deep Reinforcement Learning Agents
Viaarxiv icon

Attention U-Net: Learning Where to Look for the Pancreas

Add code
Bookmark button
Alert button
May 20, 2018
Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, Ben Glocker, Daniel Rueckert

Viaarxiv icon