Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement


Jul 31, 2019
Ryutaro Tanno, Daniel Worrall, Enrico Kaden, Aurobrata Ghosh, Francesco Grussu, Alberto Bizzi, Stamatios N. Sotiropoulos, Antonio Criminisi, Daniel C. Alexander


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Learning with Mixed Supervision for Brain Tumor Segmentation


Dec 10, 2018
Pawel Mlynarski, Hervé Delingette, Antonio Criminisi, Nicholas Ayache

* Submitted to SPIE Journal of Medical Imaging 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Adaptive Neural Trees


Oct 07, 2018
Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, Aditya Nori


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Semi-Supervised Learning via Compact Latent Space Clustering


Jul 29, 2018
Konstantinos Kamnitsas, Daniel C. Castro, Loic Le Folgoc, Ian Walker, Ryutaro Tanno, Daniel Rueckert, Ben Glocker, Antonio Criminisi, Aditya Nori

* Presented as a long oral in ICML 2018. Post-conference camera ready 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

3D Convolutional Neural Networks for Tumor Segmentation using Long-range 2D Context


Jul 23, 2018
Pawel Mlynarski, Hervé Delingette, Antonio Criminisi, Nicholas Ayache

* Submitted to the journal Computerized Medical Imaging and Graphics 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Autofocus Layer for Semantic Segmentation


Jun 11, 2018
Yao Qin, Konstantinos Kamnitsas, Siddharth Ancha, Jay Nanavati, Garrison Cottrell, Antonio Criminisi, Aditya Nori

* Published on MICCAI 2018 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Measuring Neural Net Robustness with Constraints


Jun 16, 2017
Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, Antonio Criminisi


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution


May 30, 2017
Ryutaro Tanno, Daniel E. Worrall, Aurobrata Ghosh, Enrico Kaden, Stamatios N. Sotiropoulos, Antonio Criminisi, Daniel C. Alexander

* Accepted paper at MICCAI 2017 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unsupervised domain adaptation in brain lesion segmentation with adversarial networks


Dec 28, 2016
Konstantinos Kamnitsas, Christian Baumgartner, Christian Ledig, Virginia F. J. Newcombe, Joanna P. Simpson, Andrew D. Kane, David K. Menon, Aditya Nori, Antonio Criminisi, Daniel Rueckert, Ben Glocker


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups


Nov 30, 2016
Yani Ioannou, Duncan Robertson, Roberto Cipolla, Antonio Criminisi

* Updated full version of paper, in full letter paper two-column paper. Includes many textual changes, updated CIFAR10 results, and new analysis of inter/intra-layer correlation 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>