Abstract:Though remarkable progress has been achieved in various vision tasks, deep neural networks still suffer obvious performance degradation when tested in out-of-distribution scenarios. We argue that the feature statistics (mean and standard deviation), which carry the domain characteristics of the training data, can be properly manipulated to improve the generalization ability of deep learning models. Common methods often consider the feature statistics as deterministic values measured from the learned features and do not explicitly consider the uncertain statistics discrepancy caused by potential domain shifts during testing. In this paper, we improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training. Specifically, we hypothesize that the feature statistic, after considering the potential uncertainties, follows a multivariate Gaussian distribution. Hence, each feature statistic is no longer a deterministic value, but a probabilistic point with diverse distribution possibilities. With the uncertain feature statistics, the models can be trained to alleviate the domain perturbations and achieve better robustness against potential domain shifts. Our method can be readily integrated into networks without additional parameters. Extensive experiments demonstrate that our proposed method consistently improves the network generalization ability on multiple vision tasks, including image classification, semantic segmentation, and instance retrieval. The code will be released soon at https://github.com/lixiaotong97/DSU.
Abstract:In this paper, we make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement and develop a novel alternative route to utilize RAW images in a more flexible and practical way. Inspired by a full consideration on the typical image processing pipeline, we are inspired to develop a new evaluation framework, Factorized Enhancement Model (FEM), which decomposes the properties of RAW images into measurable factors and provides a tool for exploring how properties of RAW images affect the enhancement performance empirically. The empirical benchmark results show that the Linearity of data and Exposure Time recorded in meta-data play the most critical role, which brings distinct performance gains in various measures over the approaches taking the sRGB images as input. With the insights obtained from the benchmark results in mind, a RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications in a way of using RAW images only in the training phase. REENet projects sRGB images into linear RAW domains to apply constraints with corresponding RAW images to reduce the difficulty of modeling training. After that, in the testing phase, our REENet does not rely on RAW images. Experimental results demonstrate not only the superiority of REENet to state-of-the-art sRGB-based methods and but also the effectiveness of the RAW guidance and all components.
Abstract:Video Coding for Machines (VCM) is committed to bridging to an extent separate research tracks of video/image compression and feature compression, and attempts to optimize compactness and efficiency jointly from a unified perspective of high accuracy machine vision and full fidelity human vision. In this paper, we summarize VCM methodology and philosophy based on existing academia and industrial efforts. The development of VCM follows a general rate-distortion optimization, and the categorization of key modules or techniques is established. From previous works, it is demonstrated that, although existing works attempt to reveal the nature of scalable representation in bits when dealing with machine and human vision tasks, there remains a rare study in the generality of low bit rate representation, and accordingly how to support a variety of visual analytic tasks. Therefore, we investigate a novel visual information compression for the analytics taxonomy problem to strengthen the capability of compact visual representations extracted from multiple tasks for visual analytics. A new perspective of task relationships versus compression is revisited. By keeping in mind the transferability among different machine vision tasks (e.g. high-level semantic and mid-level geometry-related), we aim to support multiple tasks jointly at low bit rates. In particular, to narrow the dimensionality gap between neural network generated features extracted from pixels and a variety of machine vision features/labels (e.g. scene class, segmentation labels), a codebook hyperprior is designed to compress the neural network-generated features. As demonstrated in our experiments, this new hyperprior model is expected to improve feature compression efficiency by estimating the signal entropy more accurately, which enables further investigation of the granularity of abstracting compact features among different tasks.
Abstract:Visual retrieval system faces frequent model update and deployment. It is a heavy workload to re-extract features of the whole database every time.Feature compatibility enables the learned new visual features to be directly compared with the old features stored in the database. In this way, when updating the deployed model, we can bypass the inflexible and time-consuming feature re-extraction process. However, the old feature space that needs to be compatible is not ideal and faces the distribution discrepancy problem with the new space caused by different supervision losses. In this work, we propose a global optimization Dual-Tuning method to obtain feature compatibility against different networks and losses. A feature-level prototype loss is proposed to explicitly align two types of embedding features, by transferring global prototype information. Furthermore, we design a component-level mutual structural regularization to implicitly optimize the feature intrinsic structure. Experimental results on million-scale datasets demonstrate that our Dual-Tuning is able to obtain feature compatibility without sacrificing performance. (Our code will be avaliable at https://github.com/yanbai1993/Dual-Tuning)
Abstract:Unsupervised domain adaptive person re-identification (UDA re-ID) aims at transferring the labeled source domain's knowledge to improve the model's discriminability on the unlabeled target domain. From a novel perspective, we argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task, and we focus on explicitly modeling appropriate intermediate domains to characterize this bridging. Specifically, we propose an Intermediate Domain Module (IDM) to generate intermediate domains' representations on-the-fly by mixing the source and target domains' hidden representations using two domain factors. Based on the "shortest geodesic path" definition, i.e., the intermediate domains along the shortest geodesic path between the two extreme domains can play a better bridging role, we propose two properties that these intermediate domains should satisfy. To ensure these two properties to better characterize appropriate intermediate domains, we enforce the bridge losses on intermediate domains' prediction space and feature space, and enforce a diversity loss on the two domain factors. The bridge losses aim at guiding the distribution of appropriate intermediate domains to keep the right distance to the source and target domains. The diversity loss serves as a regularization to prevent the generated intermediate domains from being over-fitting to either of the source and target domains. Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks, and the mAP gain is up to 7.7% on the challenging MSMT17 benchmark. Code is available at https://github.com/SikaStar/IDM.
Abstract:Domain generalizable (DG) person re-identification (ReID) is a challenging problem because we cannot access any unseen target domain data during training. Almost all the existing DG ReID methods follow the same pipeline where they use a hybrid dataset from multiple source domains for training, and then directly apply the trained model to the unseen target domains for testing. These methods often neglect individual source domains' discriminative characteristics and their relevances w.r.t. the unseen target domains, though both of which can be leveraged to help the model's generalization. To handle the above two issues, we propose a novel method called the relevance-aware mixture of experts (RaMoE), using an effective voting-based mixture mechanism to dynamically leverage source domains' diverse characteristics to improve the model's generalization. Specifically, we propose a decorrelation loss to make the source domain networks (experts) keep the diversity and discriminability of individual domains' characteristics. Besides, we design a voting network to adaptively integrate all the experts' features into the more generalizable aggregated features with domain relevance. Considering the target domains' invisibility during training, we propose a novel learning-to-learn algorithm combined with our relation alignment loss to update the voting network. Extensive experiments demonstrate that our proposed RaMoE outperforms the state-of-the-art methods.
Abstract:Unsupervised domain adaptive (UDA) person re-identification (re-ID) is a challenging task due to the missing of labels for the target domain data. To handle this problem, some recent works adopt clustering algorithms to off-line generate pseudo labels, which can then be used as the supervision signal for on-line feature learning in the target domain. However, the off-line generated labels often contain lots of noise that significantly hinders the discriminability of the on-line learned features, and thus limits the final UDA re-ID performance. To this end, we propose a novel approach, called Dual-Refinement, that jointly refines pseudo labels at the off-line clustering phase and features at the on-line training phase, to alternatively boost the label purity and feature discriminability in the target domain for more reliable re-ID. Specifically, at the off-line phase, a new hierarchical clustering scheme is proposed, which selects representative prototypes for every coarse cluster. Thus, labels can be effectively refined by using the inherent hierarchical information of person images. Besides, at the on-line phase, we propose an instant memory spread-out (IM-spread-out) regularization, that takes advantage of the proposed instant memory bank to store sample features of the entire dataset and enable spread-out feature learning over the entire training data instantly. Our Dual-Refinement method reduces the influence of noisy labels and refines the learned features within the alternative training process. Experiments demonstrate that our method outperforms the state-of-the-art methods by a large margin.
Abstract:Video coding, which targets to compress and reconstruct the whole frame, and feature compression, which only preserves and transmits the most critical information, stand at two ends of the scale. That is, one is with compactness and efficiency to serve for machine vision, and the other is with full fidelity, bowing to human perception. The recent endeavors in imminent trends of video compression, e.g. deep learning based coding tools and end-to-end image/video coding, and MPEG-7 compact feature descriptor standards, i.e. Compact Descriptors for Visual Search and Compact Descriptors for Video Analysis, promote the sustainable and fast development in their own directions, respectively. In this paper, thanks to booming AI technology, e.g. prediction and generation models, we carry out exploration in the new area, Video Coding for Machines (VCM), arising from the emerging MPEG standardization efforts1. Towards collaborative compression and intelligent analytics, VCM attempts to bridge the gap between feature coding for machine vision and video coding for human vision. Aligning with the rising Analyze then Compress instance Digital Retina, the definition, formulation, and paradigm of VCM are given first. Meanwhile, we systematically review state-of-the-art techniques in video compression and feature compression from the unique perspective of MPEG standardization, which provides the academic and industrial evidence to realize the collaborative compression of video and feature streams in a broad range of AI applications. Finally, we come up with potential VCM solutions, and the preliminary results have demonstrated the performance and efficiency gains. Further direction is discussed as well.
Abstract:The past decades have witnessed the rapid development of image and video coding techniques in the era of big data. However, the signal fidelity-driven coding pipeline design limits the capability of the existing image/video coding frameworks to fulfill the needs of both machine and human vision. In this paper, we come up with a novel image coding framework by leveraging both the compressive and the generative models, to support machine vision and human perception tasks jointly. Given an input image, the feature analysis is first applied, and then the generative model is employed to perform image reconstruction with features and additional reference pixels, in which compact edge maps are extracted in this work to connect both kinds of vision in a scalable way. The compact edge map serves as the basic layer for machine vision tasks, and the reference pixels act as a sort of enhanced layer to guarantee signal fidelity for human vision. By introducing advanced generative models, we train a flexible network to reconstruct images from compact feature representations and the reference pixels. Experimental results demonstrate the superiority of our framework in both human visual quality and facial landmark detection, which provide useful evidence on the emerging standardization efforts on MPEG VCM (Video Coding for Machine).
Abstract:In this paper, we study a new problem arising from the emerging MPEG standardization effort Video Coding for Machine (VCM), which aims to bridge the gap between visual feature compression and classical video coding. VCM is committed to address the requirement of compact signal representation for both machine and human vision in a more or less scalable way. To this end, we make endeavors in leveraging the strength of predictive and generative models to support advanced compression techniques for both machine and human vision tasks simultaneously, in which visual features serve as a bridge to connect signal-level and task-level compact representations in a scalable manner. Specifically, we employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern. By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames via a generative model, relying on the appearance of the coded key frames. Meanwhile, the sparse motion pattern is compact and highly effective for high-level vision tasks, e.g. action recognition. Experimental results demonstrate that our method yields much better reconstruction quality compared with the traditional video codecs (0.0063 gain in SSIM), as well as state-of-the-art action recognition performance over highly compressed videos (9.4% gain in recognition accuracy), which showcases a promising paradigm of coding signal for both human and machine vision.