Abstract:Generative Commonsense Reasoning (GCR) requires a model to reason about a situation using commonsense knowledge, while generating coherent sentences. Although the quality of the generated sentences is crucial, the diversity of the generation is equally important because it reflects the model's ability to use a range of commonsense knowledge facts. Large Language Models (LLMs) have shown proficiency in enhancing the generation quality across various tasks through in-context learning (ICL) using given examples without the need for any fine-tuning. However, the diversity aspect in LLM outputs has not been systematically studied before. To address this, we propose a simple method that diversifies the LLM generations, while preserving their quality. Experimental results on three benchmark GCR datasets show that our method achieves an ideal balance between the quality and diversity. Moreover, the sentences generated by our proposed method can be used as training data to improve diversity in existing commonsense generators.
Abstract:The recent advancements in 2D generation technology have sparked a widespread discussion on using 2D priors for 3D shape and texture content generation. However, these methods often overlook the subsequent user operations, such as texture aliasing and blurring that occur when the user acquires the 3D model and simplifies its structure. Traditional graphics methods partially alleviate this issue, but recent texture synthesis technologies fail to ensure consistency with the original model's appearance and cannot achieve high-fidelity restoration. Moreover, background noise frequently arises in high-resolution texture synthesis, limiting the practical application of these generation technologies.In this work, we propose a high-resolution and high-fidelity texture restoration technique that uses the rough texture as the initial input to enhance the consistency between the synthetic texture and the initial texture, thereby overcoming the issues of aliasing and blurring caused by the user's structure simplification operations. Additionally, we introduce a background noise smoothing technique based on a self-supervised scheme to address the noise problem in current high-resolution texture synthesis schemes. Our approach enables high-resolution texture synthesis, paving the way for high-definition and high-detail texture synthesis technology. Experiments demonstrate that our scheme outperforms currently known schemes in high-fidelity texture recovery under high-resolution conditions.
Abstract:Prior work has shown that the ordering in which concepts are shown to a commonsense generator plays an important role, affecting the quality of the generated sentence. However, it remains a challenge to determine the optimal ordering of a given set of concepts such that a natural sentence covering all the concepts could be generated from a pretrained generator. To understand the relationship between the ordering of the input concepts and the quality of the generated sentences, we conduct a systematic study considering multiple language models (LMs) and concept ordering strategies. We find that BART-large model consistently outperforms all other LMs considered in this study when fine-tuned using the ordering of concepts as they appear in CommonGen training data as measured using multiple evaluation metrics. Moreover, the larger GPT3-based large language models (LLMs) variants do not necessarily outperform much smaller LMs on this task, even when fine-tuned on task-specific training data. Interestingly, human annotators significantly reorder input concept sets when manually writing sentences covering those concepts, and this ordering provides the best sentence generations independently of the LM used for the generation, outperforming a probabilistic concept ordering baseline