Abstract:Open-set few-shot image classification aims to train models using a small amount of labeled data, enabling them to achieve good generalization when confronted with unknown environments. Existing methods mainly use visual information from a single image to learn class representations to distinguish known from unknown categories. However, these methods often overlook the benefits of integrating rich contextual information. To address this issue, this paper proposes a prototypical augmentation and alignment method, termed ProtoConNet, which incorporates background information from different samples to enhance the diversity of the feature space, breaking the spurious associations between context and image subjects in few-shot scenarios. Specifically, it consists of three main modules: the clustering-based data selection (CDS) module mines diverse data patterns while preserving core features; the contextual-enhanced semantic refinement (CSR) module builds a context dictionary to integrate into image representations, which boosts the model's robustness in various scenarios; and the prototypical alignment (PA) module reduces the gap between image representations and class prototypes, amplifying feature distances for known and unknown classes. Experimental results from two datasets verified that ProtoConNet enhances the effectiveness of representation learning in few-shot scenarios and identifies open-set samples, making it superior to existing methods.
Abstract:The personalized text-to-image generation has rapidly advanced with the emergence of Stable Diffusion. Existing methods, which typically fine-tune models using embedded identifiers, often struggle with insufficient stylization and inaccurate image content due to reduced textual controllability. In this paper, we propose style refinement and content preservation strategies. The style refinement strategy leverages the semantic information of visual reasoning prompts and reference images to optimize style embeddings, allowing a more precise and consistent representation of style information. The content preservation strategy addresses the content bias problem by preserving the model's generalization capabilities, ensuring enhanced textual controllability without compromising stylization. Experimental results verify that our approach achieves superior performance in generating consistent and personalized text-to-image outputs.