Abstract:We introduce VideoLISA, a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos. Leveraging the reasoning capabilities and world knowledge of large language models, and augmented by the Segment Anything Model, VideoLISA generates temporally consistent segmentation masks in videos based on language instructions. Existing image-based methods, such as LISA, struggle with video tasks due to the additional temporal dimension, which requires temporal dynamic understanding and consistent segmentation across frames. VideoLISA addresses these challenges by integrating a Sparse Dense Sampling strategy into the video-LLM, which balances temporal context and spatial detail within computational constraints. Additionally, we propose a One-Token-Seg-All approach using a specially designed <TRK> token, enabling the model to segment and track objects across multiple frames. Extensive evaluations on diverse benchmarks, including our newly introduced ReasonVOS benchmark, demonstrate VideoLISA's superior performance in video object segmentation tasks involving complex reasoning, temporal understanding, and object tracking. While optimized for videos, VideoLISA also shows promising generalization to image segmentation, revealing its potential as a unified foundation model for language-instructed object segmentation. Code and model will be available at: https://github.com/showlab/VideoLISA.
Abstract:Even in the era of large models, one of the well-known issues in continual learning (CL) is catastrophic forgetting, which is significantly challenging when the continual data stream exhibits a long-tailed distribution, termed as Long-Tailed Continual Learning (LTCL). Existing LTCL solutions generally require the label distribution of the data stream to achieve re-balance training. However, obtaining such prior information is often infeasible in real scenarios since the model should learn without pre-identifying the majority and minority classes. To this end, we propose a novel Prior-free Balanced Replay (PBR) framework to learn from long-tailed data stream with less forgetting. Concretely, motivated by our experimental finding that the minority classes are more likely to be forgotten due to the higher uncertainty, we newly design an uncertainty-guided reservoir sampling strategy to prioritize rehearsing minority data without using any prior information, which is based on the mutual dependence between the model and samples. Additionally, we incorporate two prior-free components to further reduce the forgetting issue: (1) Boundary constraint is to preserve uncertain boundary supporting samples for continually re-estimating task boundaries. (2) Prototype constraint is to maintain the consistency of learned class prototypes along with training. Our approach is evaluated on three standard long-tailed benchmarks, demonstrating superior performance to existing CL methods and previous SOTA LTCL approach in both task- and class-incremental learning settings, as well as ordered- and shuffled-LTCL settings.
Abstract:Variational Autoencoders (VAEs), as a form of deep generative model, have been widely used in recent years, and shown great great peformance in a number of different domains, including image generation and anomaly detection, etc.. This paper aims to explore neural network model compression method based on VAE. The experiment uses different neural network models for MNIST recognition as compression targets, including Feedforward Neural Network (FNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). These models are the most basic models in deep learning, and other more complex and advanced models are based on them or inherit their features and evolve. In the experiment, the first step is to train the models mentioned above, each trained model will have different accuracy and number of total parameters. And then the variants of parameters for each model are processed as training data in VAEs separately, and the trained VAEs are tested by the true model parameters. The experimental results show that using the latent space as a representation of the model compression can improve the compression rate compared to some traditional methods such as pruning and quantization, meanwhile the accuracy is not greatly affected using the model parameters reconstructed based on the latent space. In the future, a variety of different large-scale deep learning models will be used more widely, so exploring different ways to save time and space on saving or transferring models will become necessary, and the use of VAE in this paper can provide a basis for these further explorations.
Abstract:With the burgeoning advancements in the field of natural language processing (NLP), the demand for training data has increased significantly. To save costs, it has become common for users and businesses to outsource the labor-intensive task of data collection to third-party entities. Unfortunately, recent research has unveiled the inherent risk associated with this practice, particularly in exposing NLP systems to potential backdoor attacks. Specifically, these attacks enable malicious control over the behavior of a trained model by poisoning a small portion of the training data. Unlike backdoor attacks in computer vision, textual backdoor attacks impose stringent requirements for attack stealthiness. However, existing attack methods meet significant trade-off between effectiveness and stealthiness, largely due to the high information entropy inherent in textual data. In this paper, we introduce the Efficient and Stealthy Textual backdoor attack method, EST-Bad, leveraging Large Language Models (LLMs). Our EST-Bad encompasses three core strategies: optimizing the inherent flaw of models as the trigger, stealthily injecting triggers with LLMs, and meticulously selecting the most impactful samples for backdoor injection. Through the integration of these techniques, EST-Bad demonstrates an efficient achievement of competitive attack performance while maintaining superior stealthiness compared to prior methods across various text classifier datasets.
Abstract:Approximate message passing (AMP) algorithms are iterative methods for signal recovery in noisy linear systems. In some scenarios, AMP algorithms need to operate within a distributed network. To address this challenge, the distributed extensions of AMP (D-AMP, FD-AMP) and orthogonal/vector AMP (D-OAMP/D-VAMP) were proposed, but they still inherit the limitations of centralized algorithms. In this letter, we propose distributed memory AMP (D-MAMP) to overcome the IID matrix limitation of D-AMP/FD-AMP, as well as the high complexity and heavy communication cost of D-OAMP/D-VAMP. We introduce a matrix-by-vector variant of MAMP tailored for distributed computing. Leveraging this variant, D-MAMP enables each node to execute computations utilizing locally available observation vectors and transform matrices. Meanwhile, global summations of locally updated results are conducted through message interaction among nodes. For acyclic graphs, D-MAMP converges to the same mean square error performance as the centralized MAMP.
Abstract:Rapid and accurate diagnosis of pneumothorax, utilizing chest X-ray and computed tomography (CT), is crucial for assisted diagnosis. Chest X-ray is commonly used for initial localization of pneumothorax, while CT ensures accurate quantification. However, CT scans involve high radiation doses and can be costly. To achieve precise quantitative diagnosis while minimizing radiation exposure, we proposed X-Recon, a CT ultra-sparse reconstruction network based on ortho-lateral chest X-ray images. X-Recon integrates generative adversarial networks (GANs), including a generator with a multi-scale fusion rendering module and a discriminator enhanced by 3D coordinate convolutional layers, designed to facilitate CT reconstruction. To improve precision, a projective spatial transformer is utilized to incorporate multi-angle projection loss. Additionally, we proposed PTX-Seg, a zero-shot pneumothorax segmentation algorithm, combining image processing techniques with deep-learning models for the segmentation of air-accumulated regions and lung structures. Experiments on a large-scale dataset demonstrate its superiority over existing approaches. X-Recon achieved a significantly higher reconstruction resolution with a higher average spatial resolution and a lower average slice thickness. The reconstruction metrics achieved state-of-the-art performance in terms of several metrics including peak signal-to-noise ratio. The zero-shot segmentation algorithm, PTX-Seg, also demonstrated high segmentation precision for the air-accumulated region, the left lung, and the right lung. Moreover, the consistency analysis for the pneumothorax chest occupancy ratio between reconstructed CT and original CT obtained a high correlation coefficient. Code will be available at: https://github.com/wangyunpengbio/X-Recon
Abstract:Low-complexity Bayes-optimal memory approximate message passing (MAMP) is an efficient signal estimation algorithm in compressed sensing and multicarrier modulation. However, achieving replica Bayes optimality with MAMP necessitates a large-scale right-unitarily invariant transformation, which is prohibitive in practical systems due to its high computational complexity and hardware costs. To solve this difficulty, this letter proposes a low-complexity interleaved block-sparse (IBS) transform, which consists of interleaved multiple low-dimensional transform matrices, aimed at reducing the hardware implementation scale while mitigating performance loss. Furthermore, an IBS cross-domain memory approximate message passing (IBS-CD-MAMP) estimator is developed, comprising a memory linear estimator in the IBS transform domain and a non-linear estimator in the source domain. Numerical results show that the IBS-CD-MAMP offers a reduced implementation scale and lower complexity with excellent performance in IBS-based compressed sensing and interleave frequency division multiplexing systems.
Abstract:Large language models (LLMs), such as GPT series models, have received substantial attention due to their impressive capabilities for generating and understanding human-level language. More recently, LLMs have emerged as an innovative and powerful adjunct in the medical field, transforming traditional practices and heralding a new era of enhanced healthcare services. This survey provides a comprehensive overview of Medical Large Language Models (Med-LLMs), outlining their evolution from general to the medical-specific domain (i.e, Technology and Application), as well as their transformative impact on healthcare (e.g., Trustworthiness and Safety). Concretely, starting from the fundamental history and technology of LLMs, we first delve into the progressive adaptation and refinements of general LLM models in the medical domain, especially emphasizing the advanced algorithms that boost the LLMs' performance in handling complicated medical environments, including clinical reasoning, knowledge graph, retrieval-augmented generation, human alignment, and multi-modal learning. Secondly, we explore the extensive applications of Med-LLMs across domains such as clinical decision support, report generation, and medical education, illustrating their potential to streamline healthcare services and augment patient outcomes. Finally, recognizing the imperative and responsible innovation, we discuss the challenges of ensuring fairness, accountability, privacy, and robustness in Med-LLMs applications. Finally, we conduct a concise discussion for anticipating possible future trajectories of Med-LLMs, identifying avenues for the prudent expansion of Med-LLMs. By consolidating above-mentioned insights, this review seeks to provide a comprehensive investigation of the potential strengths and limitations of Med-LLMs for professionals and researchers, ensuring a responsible landscape in the healthcare setting.
Abstract:Point cloud compression has garnered significant interest in computer vision. However, existing algorithms primarily cater to human vision, while most point cloud data is utilized for machine vision tasks. To address this, we propose a point cloud compression framework that simultaneously handles both human and machine vision tasks. Our framework learns a scalable bit-stream, using only subsets for different machine vision tasks to save bit-rate, while employing the entire bit-stream for human vision tasks. Building on mainstream octree-based frameworks like VoxelContext-Net, OctAttention, and G-PCC, we introduce a new octree depth-level predictor. This predictor adaptively determines the optimal depth level for each octree constructed from a point cloud, controlling the bit-rate for machine vision tasks. For simpler tasks (\textit{e.g.}, classification) or objects/scenarios, we use fewer depth levels with fewer bits, saving bit-rate. Conversely, for more complex tasks (\textit{e.g}., segmentation) or objects/scenarios, we use deeper depth levels with more bits to enhance performance. Experimental results on various datasets (\textit{e.g}., ModelNet10, ModelNet40, ShapeNet, ScanNet, and KITTI) show that our point cloud compression approach improves performance for machine vision tasks without compromising human vision quality.
Abstract:Inspired by providing reliable communications for high-mobility scenarios, in this letter, we investigate the channel estimation and signal detection in integrated sensing and communication~(ISAC) systems based on the orthogonal delay-Doppler multiplexing~(ODDM) modulation, which consists of a pulse-train that can achieve the orthogonality with respect to the resolution of the delay-Doppler~(DD) plane. To enhance the communication performance in the ODDM-based ISAC systems, we first propose a low-complexity approximation algorithm for channel estimation, which addresses the challenge of the high complexity from high resolution in the ODDM modulation, and achieves performance close to that of the maximum likelihood estimator scheme. Then, we employ the orthogonal approximate message-passing scheme to detect the symbols in the communication process based on the estimated channel information. Finally, simulation results show that the detection performance of ODDM is better than other multi-carrier modulation schemes. Specifically, the ODDM outperforms the orthogonal time frequency space scheme by 2.3 dB when the bit error ratio is $10^{-6}$.