Abstract:As Vision-Language Models (VLMs) are increasingly deployed in split-DNN configurations--with visual encoders (e.g., ResNet, ViT) operating on user devices and sending intermediate features to the cloud--there is a growing privacy risk from semantic information leakage. Existing approaches to reconstructing images from these intermediate features often result in blurry, semantically ambiguous images. To directly address semantic leakage, we propose CapRecover, a cross-modality inversion framework that recovers high-level semantic content, such as labels or captions, directly from intermediate features without image reconstruction. We evaluate CapRecover on multiple datasets and victim models, demonstrating strong performance in semantic recovery. Specifically, CapRecover achieves up to 92.71% Top-1 label accuracy on CIFAR-10 and generates fluent captions from ResNet50 features on COCO2017 with ROUGE-L scores up to 0.52. Our analysis further reveals that deeper convolutional layers encode significantly more semantic information compared to shallow layers. To mitigate semantic leakage, we introduce a simple yet effective protection method: adding random noise to intermediate features at each layer and removing the noise in the next layer. Experimental results show that this approach prevents semantic leakage without additional training costs.
Abstract:Recent research has focused on exploring the vulnerabilities of Large Language Models (LLMs), aiming to elicit harmful and/or sensitive content from LLMs. However, due to the insufficient research on dual-jailbreaking -- attacks targeting both LLMs and Guardrails, the effectiveness of existing attacks is limited when attempting to bypass safety-aligned LLMs shielded by guardrails. Therefore, in this paper, we propose DualBreach, a target-driven framework for dual-jailbreaking. DualBreach employs a Target-driven Initialization (TDI) strategy to dynamically construct initial prompts, combined with a Multi-Target Optimization (MTO) method that utilizes approximate gradients to jointly adapt the prompts across guardrails and LLMs, which can simultaneously save the number of queries and achieve a high dual-jailbreaking success rate. For black-box guardrails, DualBreach either employs a powerful open-sourced guardrail or imitates the target black-box guardrail by training a proxy model, to incorporate guardrails into the MTO process. We demonstrate the effectiveness of DualBreach in dual-jailbreaking scenarios through extensive evaluation on several widely-used datasets. Experimental results indicate that DualBreach outperforms state-of-the-art methods with fewer queries, achieving significantly higher success rates across all settings. More specifically, DualBreach achieves an average dual-jailbreaking success rate of 93.67% against GPT-4 with Llama-Guard-3 protection, whereas the best success rate achieved by other methods is 88.33%. Moreover, DualBreach only uses an average of 1.77 queries per successful dual-jailbreak, outperforming other state-of-the-art methods. For the purpose of defense, we propose an XGBoost-based ensemble defensive mechanism named EGuard, which integrates the strengths of multiple guardrails, demonstrating superior performance compared with Llama-Guard-3.