Abstract:Large Language Models (LLMs) have achieved impressive performance in text summarization and are increasingly deployed in real-world applications. However, these systems often inherit associative and framing biases from pre-training data, leading to inappropriate or unfair outputs in downstream tasks. In this work, we present AdvSumm (Adversarial Summarization), a domain-agnostic training framework designed to mitigate bias in text summarization through improved generalization. Inspired by adversarial robustness, AdvSumm introduces a novel Perturber component that applies gradient-guided perturbations at the embedding level of Sequence-to-Sequence models, enhancing the model's robustness to input variations. We empirically demonstrate that AdvSumm effectively reduces different types of bias in summarization-specifically, name-nationality bias and political framing bias-without compromising summarization quality. Compared to standard transformers and data augmentation techniques like back-translation, AdvSumm achieves stronger bias mitigation performance across benchmark datasets.
Abstract:LLMs can be unpredictable, as even slight alterations to the prompt can cause the output to change in unexpected ways. Thus, the ability of models to accurately explain their behavior is critical, especially in high-stakes settings. One approach for evaluating explanations is counterfactual simulatability, how well an explanation allows users to infer the model's output on related counterfactuals. Counterfactual simulatability has been previously studied for yes/no question answering tasks. We provide a general framework for extending this method to generation tasks, using news summarization and medical suggestion as example use cases. We find that while LLM explanations do enable users to better predict LLM outputs on counterfactuals in the summarization setting, there is significant room for improvement for medical suggestion. Furthermore, our results suggest that the evaluation for counterfactual simulatability may be more appropriate for skill-based tasks as opposed to knowledge-based tasks.
Abstract:With a combination of quantitative experiments, human judgments, and qualitative analyses, we evaluate the quantity and quality of African American Language (AAL) representation in 12 predominantly English, open-source pretraining corpora. We specifically focus on the sources, variation, and naturalness of included AAL texts representing the AAL-speaking community. We find that AAL is underrepresented in all evaluated pretraining corpora compared to US demographics, constituting as little as 0.007% of documents. We also find that more than 25% of AAL texts in C4 may be inappropriate for LLMs to generate and reinforce harmful stereotypes. Finally, we find that most automated language, toxicity, and quality filters are more likely to conserve White Mainstream English (WME) texts over AAL in pretraining corpora.
Abstract:Preference alignment via reward models helps build safe, helpful, and reliable large language models (LLMs). However, subjectivity in preference judgments and the lack of representative sampling in preference data collection can introduce new biases, hindering reward models' fairness and equity. In this work, we introduce a framework for evaluating dialect biases in reward models and conduct a case study on biases against African American Language (AAL) through several experiments comparing reward model preferences and behavior on paired White Mainstream English (WME) and both machine-translated and human-written AAL corpora. We show that reward models are less aligned with human preferences when processing AAL texts vs. WME ones (-4\% accuracy on average), frequently disprefer AAL-aligned texts vs. WME-aligned ones, and steer conversations toward WME, even when prompted with AAL texts. Our findings provide a targeted analysis of anti-AAL biases at a relatively understudied stage in LLM development, highlighting representational harms and ethical questions about the desired behavior of LLMs concerning AAL.
Abstract:Global partisan hostility and polarization has increased, and this polarization is heightened around presidential elections. Models capable of generating accurate summaries of diverse perspectives can help reduce such polarization by exposing users to alternative perspectives. In this work, we introduce a novel dataset and task for independently summarizing each political perspective in a set of passages from opinionated news articles. For this task, we propose a framework for evaluating different dimensions of perspective summary performance. We benchmark 10 models of varying sizes and architectures through both automatic and human evaluation. While recent models like GPT-4o perform well on this task, we find that all models struggle to generate summaries faithful to the intended perspective. Our analysis of summaries focuses on how extraction behavior depends on the features of the input documents.
Abstract:In the field of emotion analysis, much NLP research focuses on identifying a limited number of discrete emotion categories, often applied across languages. These basic sets, however, are rarely designed with textual data in mind, and culture, language, and dialect can influence how particular emotions are interpreted. In this work, we broaden our scope to a practically unbounded set of \textit{affective states}, which includes any terms that humans use to describe their experiences of feeling. We collect and publish MASIVE, a dataset of Reddit posts in English and Spanish containing over 1,000 unique affective states each. We then define the new problem of \textit{affective state identification} for language generation models framed as a masked span prediction task. On this task, we find that smaller finetuned multilingual models outperform much larger LLMs, even on region-specific Spanish affective states. Additionally, we show that pretraining on MASIVE improves model performance on existing emotion benchmarks. Finally, through machine translation experiments, we find that native speaker-written data is vital to good performance on this task.
Abstract:We evaluate how well LLMs understand African American Language (AAL) in comparison to their performance on White Mainstream English (WME), the encouraged "standard" form of English taught in American classrooms. We measure LLM performance using automatic metrics and human judgments for two tasks: a counterpart generation task, where a model generates AAL (or WME) given WME (or AAL), and a masked span prediction (MSP) task, where models predict a phrase that was removed from their input. Our contributions include: (1) evaluation of six pre-trained, large language models on the two language generation tasks; (2) a novel dataset of AAL text from multiple contexts (social media, hip-hop lyrics, focus groups, and linguistic interviews) with human-annotated counterparts in WME; and (3) documentation of model performance gaps that suggest bias and identification of trends in lack of understanding of AAL features.